• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Toán lớp 12 / Đồng biến, nghịch biến của hàm số khác

Đồng biến, nghịch biến của hàm số khác

Ngày 09/09/2018 Thuộc chủ đề:Toán lớp 12 Tag với:Tính đơn điệu

Đồng biến, nghịch biến của hàm số khác

Đồng biến, nghịch biến của hàm số khác


Các bước xét tính đơn điệu của hàm số

  • Bước 1 : Tìm tập xác định
  • Bước 2:  Tính đạo hàm \(f'(x)=0\). Tìm các điểm \(x_i\) (i= 1 , 2 ,…, n) mà tại đó đạo hàm bằng 0 hoặc không xác định.
  • Bước 3:  Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên.
  • Bước 4:  Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Ví dụ 1 . Tìm các khoảng đồng biến, nghịch biến (hoặc xét chiều biến thiên) của hàm số:

\(y=\frac{x+1}{x-1}\)

  • Xét hàm số \(y=\frac{x+1}{x-1}\).
    • TXĐ: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\)
    • \(y’ = \frac{{ – 2}}{{{{(x – 1)}^2}}} > 0,\forall \ne 1\)
  • Bảng biến thiên:

Đồng biến, nghịch biến của hàm số khác

  • Kết luận: Hàm số nghịch biến trên các khoảng \(\left( { – \infty ;1} \right)\) và \(\left( { 1;+ \infty } \right)\).

Ví dụ 2 . Tìm các khoảng đồng biến, nghịch biến (hoặc xét chiều biến thiên) của hàm số:

$y = \frac{{x – 2}}{{x – 1}}.$

TXĐ: $D = R\backslash \left\{ 1 \right\}.$
Ta có: $y’ = \frac{1}{{{{(x – 1)}^2}}} > 0,\forall x \in D$, $y’$ không xác định tại ${\rm{x}} = {\rm{1}}.$
Đồng biến, nghịch biến của hàm số khác
Vậy hàm số $y$ đồng biến trên mỗi khoảng $\left( { – \infty ;1} \right)$ và $\left( {1; + \infty } \right)$ (hay hàm số $y$ đồng  biến trên mỗi khoảng xác định).


Đồng biến, nghịch biến của hàm số khác
—
Ví dụ 4. Tìm các khoảng đồng biến, nghịch biến (hoặc xét chiều biến thiên) của hàm số:
a. $y = \frac{{{x^2} + 4x + 4}}{{x + 1}}.$
b. $y = \frac{{4{x^2} + 5x + 5}}{{x + 1}}.$

a. TXĐ: $D = R\backslash \left\{ { – 1} \right\}.$
Ta có: $y’ = \frac{{{x^2} + 2x}}{{{{(x + 1)}^2}}}$ $ \Rightarrow y’ = 0 \Leftrightarrow x = – 2,x = 0.$
Giới hạn: $\mathop {\lim }\limits_{x \to – \infty } y = – \infty $ và $\mathop {\lim }\limits_{x \to + \infty } y = + \infty $, $\mathop {\lim }\limits_{x \to – {1^ – }} y = – \infty $ và $\mathop {\lim }\limits_{x \to – {1^ + }} y = + \infty .$
Bảng biến thiên:

Đồng biến, nghịch biến của hàm số khác

Vậy hàm số $y$ đồng biến trên mỗi khoảng: $( – \infty ; – 2)$ và $(0; + \infty )$, nghịch biến trên mỗi khoảng: $( – 2; – 1)$ và $( – 1;0)$.

b. TXĐ: $D = R\backslash \left\{ { – 1} \right\}.$
Ta có: $y’ = \frac{{4{x^2} + 8x}}{{{{(x + 1)}^2}}}$ $ \Rightarrow y’ = 0 \Leftrightarrow 4{x^2} + 8x = 0$ $ \Leftrightarrow x = 0,x = – 2.$
Giới hạn: $\mathop {\lim }\limits_{x \to – \infty } y = – \infty $ và $\mathop {\lim }\limits_{x \to + \infty } y = + \infty $, $\mathop {\lim }\limits_{x \to – {1^ – }} y = – \infty $ và $\mathop {\lim }\limits_{x \to – {1^ + }} y = + \infty .$
Bảng biến thiên:

Đồng biến, nghịch biến của hàm số khác

Vậy hàm số $y$ đồng biến trên mỗi khoảng: $( – \infty ; – 2)$ và $(0; + \infty )$, nghịch biến trên mỗi khoảng: $( – 2; – 1)$ và $( – 1;0).$

Ví dụ 5. Tìm các khoảng đồng biến, nghịch biến (hoặc xét chiều biến thiên) của hàm số:
a. $y = \left| {{x^2} – 2x – 3} \right|.$
b. $y = \left| {{x^2} – 4x + 3} \right| + 2x + 3.$
a. TXĐ: $D = R.$
Ta có: $y = \sqrt {{{({x^2} – 2x – 3)}^2}} $ $ \Rightarrow y’ = \frac{{2(x – 1)({x^2} – 2x – 3)}}{{\sqrt {{{({x^2} – 2x – 3)}^2}} }}.$
$y’ = 0 \Leftrightarrow x = 1$, hàm số không có đạo hàm tại $x = – 1, x = 3$ (tham khảo lời giải thích ở ý b).
Bảng xét dấu:

Đồng biến, nghịch biến của hàm số khác

Vậy hàm số $y$ đồng biến trên mỗi khoảng: $( – 1;1)$ và $(3; + \infty )$, nghịch biến trên: $( – \infty ; – 1)$ và $(1;3).$
Nhận xét:
+ Bài toán xét tính đơn điệu của hàm số được chuyển về bài toán xét dấu của một biểu thức $y’.$
+ Khi tính đạo hàm của hàm số có dạng $y = \left| {f(x)} \right|$ ta chuyển trị tuyệt đối vào trong căn thức $y = \sqrt {{f^2}(x)} $, khi đó tại những điểm mà $f(x) = 0$ thì hàm số không có đạo hàm.
b. TXĐ: $D = R.$
Ta có: $y = {x^2} – 4x + 3 + 4x + 3$ $ = {x^2} + 6$ khi $x \le 1 \vee x \ge 3$ và $y = – {x^2} + 4x – 3 + 4x + 3$ $ = – {x^2} + 8x$ khi $1 \le x \le 3.$
Khi $x \in ( – \infty ;1) \cup (3; + \infty )$ thì: $y’ = 2x \Rightarrow y’ = 0$ $ \Leftrightarrow x = 0 \in ( – \infty ;1) \cup (3; + \infty ).$
Khi $x \in (1;3)$ thì: $y’ = – 2x + 8$ $ \Rightarrow y’ = 0 \Leftrightarrow x = 4 \notin (1;3).$
Tại $x = 1$, ta có: $\left\{ \begin{array}{l}
f'({1^ + }) = 6\\
f'({1^ – }) = 2
\end{array} \right.$. Vì $f'({1^ + }) \ne f'({1^ – })$ nên $f’(1)$ không tồn tại.
Tại $x = 3$, ta có: $\left\{ \begin{array}{l}
f'({3^ + }) = 6\\
f'({3^ – }) = 2
\end{array} \right.$ nên $f'(3)$ không tồn tại.
Vậy hàm số $y$ đồng biến trên khoảng $(0; + \infty )$ và nghịch biến trên khoảng $( – \infty ;0).$

Ví dụ 6. Tìm các khoảng đồng biến, nghịch biến (hoặc xét chiều biến thiên) của hàm số:
a. $y = \frac{{4x + 5}}{{4{x^2} – 4}}.$
b. $y = \frac{{12x + 1}}{{12{x^2} + 2}}.$
c. $y = \frac{{3{x^2} – x + 1}}{{{x^2} – x + 1}}.$

a. TXĐ: $D = R\backslash \left\{ { – 1;1} \right\}.$
Ta có: $y’ = \frac{{ – 16{x^2} – 40x – 16}}{{{{\left( {4{x^2} – 4} \right)}^2}}}$ $ \Rightarrow y’ = 0$ ⇔ $x = – 2$ hoặc $x = – \frac{1}{2}.$
Vậy, hàm số $y$ đồng biến trên các khoảng $\left( { – 2; – 1} \right)$, $\left( { – 1; – \frac{1}{2}} \right)$ và nghịch biến trên các khoảng $\left( { – \infty ; – 2} \right)$, $\left( { – \frac{1}{2};1} \right)$, $\left( {1; + \infty } \right).$
b. TXĐ: $D = R.$
Ta có: $y’ = \frac{{ – 36{x^2} – 6x + 6}}{{{{\left( {6{x^2} + 1} \right)}^2}}}.$ Với $\forall x \in R: y’ = 0$ ⇔ $x = – \frac{1}{2}$ hoặc $x = \frac{1}{3}.$
Bảng xét dấu:

Đồng biến, nghịch biến của hàm số khác

Trên khoảng $\left( { – \frac{1}{2};\frac{1}{3}} \right)$: $y’ > 0$ $ \Rightarrow y$ đồng biến trên khoảng $\left( { – \frac{1}{2};\frac{1}{3}} \right).$
Trên khoảng $\left( { – \infty ; – \frac{1}{2}} \right)$ và $\left( {\frac{1}{3}; + \infty } \right)$: $y’ < 0$ $ \Rightarrow y$ nghịch biến trên các khoảng $\left( { – \infty ; – \frac{1}{2}} \right)$ và $\left( {\frac{1}{3}; + \infty } \right).$ c. TXĐ: $D = R.$ Ta có: $y’ = \frac{{ – 2{x^2} + 4x}}{{{{\left( {{x^2} – x + 1} \right)}^2}}}.$ Với $\forall x \in R: y’ = 0$ $ \Leftrightarrow x = 0$ hoặc $x = 2.$ Trên khoảng $\left( {0;2} \right)$: $y’ > 0$ $ \Rightarrow y$ đồng biến trên khoảng $\left( {0;2} \right).$
Trên khoảng $\left( { – \infty ;0} \right)$ và $\left( {2; + \infty } \right)$: $y’ < 0$ $ \Rightarrow y$ nghịch biến trên các khoảng $\left( { – \infty ;0} \right)$ và $\left( {2; + \infty } \right).$ Ví dụ 7. Tìm các khoảng đồng biến, nghịch biến (hoặc xét chiều biến thiên) của hàm số: a. ${\rm{y}} = {\rm{x}} + \sqrt {2x – {x^2}} .$ b. $y = \left( {2x + 1} \right)\sqrt {9 – {x^2}} .$ c. $y = \sqrt {{x^2} – x – 20} .$ a. TXĐ: $D = \left[ {0;{\rm{2}}} \right].$ Ta có: $y’ = 1 + \frac{{1 – x}}{{\sqrt {2x – {x^2}} }}$ $ = \frac{{\sqrt {2x – {x^2}} + 1 – x}}{{\sqrt {2x – {x^2}} }}.$ $y’ = 0$ $ \Leftrightarrow \sqrt {2x – {x^2}} = x – 1$ $ \Leftrightarrow \left\{ \begin{array}{l} x \ge 1\\ 2x – {x^2} = {(x – 1)^2} \end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l} x \ge 1\\ 2{x^2} – 4x + 1 = 0 \end{array} \right.$ $ \Leftrightarrow x = 1 + \frac{{\sqrt 2 }}{2}.$ Vậy, hàm số $y$ đồng biến trên $\left( {0;1 + \frac{{\sqrt 2 }}{2}} \right)$ và nghịch biến trên $\left( {1 + \frac{{\sqrt 2 }}{2};2} \right).$ b. TXĐ: $D = \left[ { – 3;3} \right].$ Ta có: $y’ = 2\sqrt {9 – {x^2}} – \frac{{x\left( {2x + 1} \right)}}{{\sqrt {9 – {x^2}} }}$ $ = \frac{{ – 4{x^2} – x + 18}}{{\sqrt {9 – {x^2}} }}.$ Hàm số đã cho không có đạo hàm tại $x = – 3$ và $x = 3.$ Với $\forall x \in \left( { – 3;3} \right)$: $y’ = 0 \Leftrightarrow x = – \frac{9}{4}$ hoặc $x = 2.$ Bảng biến thiên: Đồng biến, nghịch biến của hàm số khác

Vậy, hàm số $y$ giảm trên các khoảng $\left( { – 3; – \frac{9}{4}} \right)$, $\left( {2;3} \right)$ và tăng trên khoảng $\left( { – \frac{9}{4};2} \right).$
c. TXĐ: $D = ( – \infty ; – 4] \cup [5; + \infty ).$
Ta có: $y’ = \frac{{2x – 1}}{{2\sqrt {{x^2} – x – 20} }}$ $ \Rightarrow y’ = 0$ $ \Leftrightarrow \left\{ \begin{array}{l}
2x – 1 = 0\\
x < – 4 \vee x > 5
\end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l}
x = \frac{1}{2}\\
x < – 4 \vee x > 5
\end{array} \right.$

Nên phương trình $y’ = 0$ vô nghiệm.
Vậy hàm số $y$ đồng biến trên khoảng $(5; + \infty )$ và nghịch biến trên $( – \infty ; – 4).$

Ví dụ 8. Tìm các khoảng đồng biến, nghịch biến (hoặc xét chiều biến thiên) của hàm số:
a. $y = 2\sin x + \cos 2x$ với $x \in \left[ {0;\pi } \right].$
b. $y = \sin 2x – 2\cos x – 2x$ với $x \in \left( { – \frac{\pi }{2};\frac{\pi }{2}} \right).$

a. Hàm số đã cho xác định trên đoạn $\left[ {0;\pi } \right].$
Ta có: $y’ = 2\cos x\left( {1 – 2\sin x} \right).$ Ta cần tìm nghiệm của phương trình $y’ = 0$ trên khoảng $\left( {0;\pi } \right).$
$y’ = 0 \Leftrightarrow x \in \left( {0;\pi } \right)$: $\left[ \begin{array}{l}
\cos x = 0\\
\sin x = \frac{1}{2}
\end{array} \right.$ $ \Leftrightarrow x = \frac{\pi }{2}, x = \frac{\pi }{6}, x = \frac{{5\pi }}{6}.$
Bảng biến thiên:

Đồng biến, nghịch biến của hàm số khác

Dựa vào bảng biến thiên suy ra: hàm số đồng biến trên các khoảng $\left( {0;\frac{\pi }{6}} \right)$ và $\left( {\frac{\pi }{2};\frac{{5\pi }}{6}} \right)$, nghịch biến trên các khoảng $\left( {\frac{\pi }{6};\frac{\pi }{2}} \right)$ và $\left( {\frac{{5\pi }}{6};\pi } \right).$
b. Hàm số đã cho xác định trên khoảng $\left( { – \frac{\pi }{2};\frac{\pi }{2}} \right).$
Ta có: $y’ = 2\cos 2x + 2\sin x – 2$ $ = 2\left( {1 – 2{{\sin }^2}x} \right) + 2\sin x – 2.$
$y’ = – 2\sin x\left( {2\sin x – 1} \right).$
Trên khoảng $\left( { – \frac{\pi }{2};\frac{\pi }{2}} \right)$: $y’ = 0$ $ \Leftrightarrow \left\{ \begin{array}{l}
x \in \left( { – \frac{\pi }{2};\frac{\pi }{2}} \right)\\
– 2\sin x\left( {2\sin x – 1} \right) = 0
\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = \frac{\pi }{6}
\end{array} \right.$
Bảng biến thiên:

Đồng biến, nghịch biến của hàm số khác

Hàm số giảm trên các khoảng $\left( { – \frac{\pi }{2};0} \right)$, $\left( {\frac{\pi }{6};\frac{\pi }{2}} \right)$ và tăng trên khoảng $\left( {0;\frac{\pi }{6}} \right).$
 

Bài liên quan:

  1. Bài tập luyện tập Tính đơn diệu của hàm số – 2022
  2. DẠNG 1: LÝ THUYẾT VỀ XÉT TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ VÀ VÍ DỤ
  3. Bài 1. Sự đồng biến, nghịch biến của hàm số
  4. Trắc nghiệm Sự đồng biến, nghịch biến của hàm số
  5. Sách giáo khoa Bài 1. Tính đơn điệu của hàm số – Giải tích 12 nâng cao
  6. Sách giáo khoa Bài 1. Sự đồng biến, nghịch biến của hàm số – Giải tích 12 cơ bản
  7. Tìm tham số m để hàm số đơn điệu trên một miền
  8. Đồng biến, nghịch biến của hàm số trùng phương
  9. Đồng biến, nghịch biến của hàm số bậc ba
  10. Lý thuyết đồng biến, nghịch biến của hàm số

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • HƯỚNG DẪN ÔN THI THPTQG MÔN TOÁN – CHƯƠNG-TRÌNH-MỚI 2025
  • Phát triển các câu tương tự Đề TOÁN THAM KHẢO 2024
  • Học toán lớp 12
  • Chương 1: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số
  • Chương 2: Hàm Số Lũy Thừa Hàm Số Mũ Và Hàm Số Lôgarit
  • Chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng
  • Chương 1: Khối Đa Diện
  • Chương 2: Mặt Nón, Mặt Trụ, Mặt Cầu
  • Chương 3: Phương Pháp Tọa Độ Trong Không Gian

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.