• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Hệ Phương Trình - Bài tập tự luận / Đề bài: Giải các phương trình sau:1)  $\left ( \frac{x+2}{x+1} \right )^{2}+\left ( \frac{x-2}{x-1} \right )^{2}-\frac{5}{2}.\frac{x^{2}-4}{x^{2}-1}=0$2)  $\frac{1}{y^{3} -y^{2}+y-1}$-$\frac{4}{y+1}=\frac{y^{2}+10y}{y^{4}-1}-\frac{4y^{2}+21}{y^{3} +y^{2}+y+1}$

Đề bài: Giải các phương trình sau:1)  $\left ( \frac{x+2}{x+1} \right )^{2}+\left ( \frac{x-2}{x-1} \right )^{2}-\frac{5}{2}.\frac{x^{2}-4}{x^{2}-1}=0$2)  $\frac{1}{y^{3} -y^{2}+y-1}$-$\frac{4}{y+1}=\frac{y^{2}+10y}{y^{4}-1}-\frac{4y^{2}+21}{y^{3} +y^{2}+y+1}$

Ngày 09/07/2021 Thuộc chủ đề:Hệ Phương Trình - Bài tập tự luận Tag với:Các dạng hệ phương trình khác

Đề bài: Giải các phương trình sau:1)  $\left ( \frac{x+2}{x+1} \right )^{2}+\left ( \frac{x-2}{x-1} \right )^{2}-\frac{5}{2}.\frac{x^{2}-4}{x^{2}-1}=0$2)  $\frac{1}{y^{3} -y^{2}+y-1}$-$\frac{4}{y+1}=\frac{y^{2}+10y}{y^{4}-1}-\frac{4y^{2}+21}{y^{3} +y^{2}+y+1}$

He phuong trinh dai so

Lời giải

1. Điều kiên: $x\neq \pm 1$
đặt ẩn phụ: $\frac{x+2}{x+1}=u, \frac{x-2}{x-1}=v$
Phương trình trở thành: $u^{2}+v^{2}-\frac{5}{2}uv=0$
Giải ra ta được $u=2v$ hoặc $v=2u$
– Nếu $u=2v$ thì $\frac{x+2}{x+1}=2.\frac{x-2}{x-1}$, hay $2x^{2}-2x-4=x^{2}+x-2$
từ đó ta được phương trình bậc 2:  $x^{2}-3x-2=0$. Giải ra được nghiệm là $x_{1,2}=\frac{3\pm \sqrt{17}}{2}$
– Nếu $v=2u$ thì $2\frac{x+2}{x+1}=\frac{x-2}{x-1}$ từ đó ta được phương trình bậc 2: $x^{2}+3x-2=0$. Giải ra được nghiệm là $x_{3,4}=\frac{-3\pm \sqrt{17}}{2}$
Vậy phương trình đã cho có 4 nghiệm:
$x_{1}=\frac{3+\sqrt{17}}{2}$, $x_{2}=\frac{3-\sqrt{17}}{2}$, $x_{3}=\frac{-3+ \sqrt{17}}{2}$, $x_{4}=\frac{-3- \sqrt{17}}{2}$
2. Trước hết ta phân tích mẫu thành nhân tử:
$y^{3}-y^{2}+y-1=y^{2}(y-1)+(y-1)=(y-1)(y^{2}+1)$
$y^{4}-1=(y^{2}+1)(y^{2}-1)$
$y^{3}+y^{2}+y+1=y^{2}(y+1)+(y+1)=(y+1)(y^{2}+1)$
do đó $MC=(y^{2}+1)(y^{2}-1)$ với điều kiện $y\neq \pm 1$
Quy đồng rồi khử mẫu ta được
$y+1-4(y-1)(y^{2}+1)=y^{2}+10y-(4y^{2}+21)(y-1)$
hay $-3y+5=y^{2}-11y+21$
từ đó  có phương trình bậc 2:
$y^{2}-8y+16=0 \Leftrightarrow y=4$ (thỏa mãn điều kiện)
vậy phương trình đã cho có nghiệm duy nhất $y=4$

=========
Chuyên mục: Các dạng hệ phương trình khác

Bài liên quan:

  1. Đề bài: Cho hệ phương trình: $\left\{ \begin{array}{l}x + y = m\\{x^2} + {y^2} = 6 – {m^2}\end{array} \right.$$1$. Giải hệ phương trình khi $m = 1.$$2$. Tìm $m$ để hệ phương trình đã cho có nghiệm.
  2. Đề bài: Giải hệ phương trình: \(\begin{cases}x^3-y^3=7 \\ xy(x-y)=2 \end{cases}\)
  3. Đề bài: Cho hệ: $ \left\{ \begin{array}{l}x^3 – y^3 = m(x-y)\\x + y =  – 1\end{array} \right. $       (*)a. Giải (*) khi $m = 3$b. Định $m$ để hệ có 3 nghiệm  $(x_1,y_1);(x_2,y_2);(x_3,y_3) $  mà  $ x_1,x_2,x_3 $  lập thành một cấp số cộng và trong đó có 2 số mà giá trị tuyệt đối lớn hơn 1.
  4. Đề bài: Giải hệ $\left\{ \begin{array}{l} u+v=11\\ u^2-2v+3u=28 \end{array} \right. $
  5. Đề bài: Giải hệ phương trình:   $\left\{ \begin{array}{l}{lo}{{g}_{y}}{2}{.lo}{{g}_{2}}{x + 1 = 0            (*)}\\{sinx}{.siny = 1 + cosxcosy  (**)}\end{array} \right.$ (với $x+ y < 6)$
  6. Đề bài: Giải hệ: $\begin{cases} xyzt+xy+x+y=131\\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{77}{60} \\ x+y+z+t=14\\ \frac{xy}{zt}=\frac{3}{10} \end{cases}$
  7. Đề bài: Giải hệ: $\begin{cases} x+y+z=1\\(y-z)^2+(z-x)^2+(x-y)^2=68 \\x(y-z)^2+y(z-x)^2+z(x-y)^2=16\end{cases}$
  8. Đề bài: Giải hệ phương trình: $(I) \left\{ \begin{array}{l} x^2+y^2+6x+2y=0              (1)\\ x+y+8=0                                   (2) \end{array} \right.$
  9. Đề bài: Cho hệ phương trình: $\left\{ \begin{array}{l}x + y = m\\{x^2} + {y^2} = 6 – {m^2}\end{array} \right.$$1$. Giải hệ phương trình khi $m = 1.$$2$. Tìm $m$ để hệ phương trình đã cho có nghiệm.
  10. Đề bài: Giải hệ phương trình:  $\begin{cases}(x^2+xy)(y+2z)=\frac{1}{8} \\ x^2+y^2+3xy+4xz+2yz=-\frac{3}{4} \\ x+y+z=0 \end{cases}$
  11. Đề bài: Giải các hệ sau:1. $\begin{cases}x^2+y^2+xy=13 \\ x=4-y \end{cases}$2. $\begin{cases}z+t=4+2\sqrt{zt} \\ z=10-t \end{cases}$
  12. Đề bài: Giải hệ phương trình $\begin{cases}6x^2\sqrt{x^3-6x+5}=(x^3+4)(x^2+2x-6)  ( 1) \\ x+\frac{2}{x}\geq 1+\frac{2}{x^2}                                               (2)\end{cases}$.
  13. Đề bài: Giải hệ phương trình:$\left\{ \begin{array}{l}2A_x^y + 5C_x^y = 90\\5A_x^y – 2C_y^x = 80\end{array} \right.$(Ở đây $A_n^k,C_n^k$ lần lượt là số chỉnh hợp và tổ hợp chập $k$ của $n$ phần tử)
  14. Đề bài: Cho hệ: $ \left\{ \begin{array}{l}x^3 – y^3 = m(x-y)\\x + y =  – 1\end{array} \right. $       (*)a. Giải (*) khi $m = 3$b. Định $m$ để hệ có 3 nghiệm  $(x_1,y_1);(x_2,y_2);(x_3,y_3) $  mà  $ x_1,x_2,x_3 $  lập thành một cấp số cộng và trong đó có 2 số mà giá trị tuyệt đối lớn hơn 1.
  15. Đề bài: Giải hệ phương trình  $\left\{ \begin{array}{l} x^2-3xy+y^2+2x+3y-4=0            (1)\\ 2x-y=1                                                                                             (2) \end{array} \right.$

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.