• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: Chứng minh rằng: $ab+bc+ca-abc\leq \frac{8}{27}$.Trong đó $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=1$.

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

adsense
Đề bài: Chứng minh rằng: $ab+bc+ca-abc\leq \frac{8}{27}$.Trong đó $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=1$.

Bat dang thuc

Lời giải

Đề bài:
Chứng minh rằng: $ab+bc+ca-abc\leq \frac{8}{27}$.Trong đó $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=1$.
Lời giải

adsense

Ta có:
$
\displaystyle VT=ab+bc+ca-abc+1-1=1-a-b-c+ab+bc+ac-abc$.
       $
\displaystyle =(1-a)(1-b)(1-c)\leq [\frac{(1-a)+(1-b)+(1-c)}{3}]^3= [\frac{3-(a+b+c)}{3}]^3=\frac{8}{27}$, đpcm.
Dấu đẳng thức xảy ra khi :
    $
\displaystyle \Leftrightarrow\begin{cases} a+b+c=1\\ a=b=c \end{cases}\Leftrightarrow a=b=c=\frac{1}{3}$

=========
Chuyên mục: Bất đẳng thức Côsi

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Bài liên quan:

  1. Đề bài: Cho $x,y,z$ là ba số dương và $x+y+z=1$.Chứng minh : $\sqrt{1-x}+\sqrt{1-y}+\sqrt{1-z}\leq \sqrt{6}$.
  2. Đề bài: Cho $x,y,z>0$ và $x+y+z=\frac{3}{4}$.Chứng minh rằng: $\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}\leq 3$.
  3. Đề bài: Cho \(a,b>0\). Chứng minh rằng: \((a^{3}+b^{3})(\frac{1}{a}+\frac{1}{b})\geq (a+b)^{2}\).
  4. Đề bài: Chứng minh rằng: $(\frac{2^{n+1}-1}{n^{2}+2n+1})^{n+1}\geq \frac{C^{0}_{n}C^{1}_{n}C^{2}_{n}…C^{n}_{n}}{(n+1)!},\forall n\in N^{*}$
  5. Đề bài: Cho các số dương $a,b,c,d$ chứng minh rằng:  $\sqrt{ab}+\sqrt{cd}\leq \sqrt{(a+c)(b+d)}$
  6. Đề bài: Chứng minh rằng: $(1-x)(1-y)(x+y)\leq \frac{8}{27}$.Trong đó $x,y$ là các số thực thỏa mãn $0\leq x,y\leq 1$.
  7. Đề bài: Với  $a, b, c$ là $3$ số thực bất kỳ thỏa mãn điều kiện $a+b+c = 0$. Chứng minh rằng:                             \({8^a} + {8^b} + {8^c} \ge {2^a} + {2^b} + {2^c}\)
  8. Đề bài: Cho $x,y,z>0$ và $x+y+z\geq 3$.Chứng minh : $ \frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\geq 3$.
  9. Đề bài: Cho $-1\leq x\leq 1$. Chứng minh : $S=\sqrt[4]{1-x^2}+\sqrt[4]{1-x}+\sqrt[4]{1+x}\leq 3$.
  10. Đề bài: Chứng minh rằng: \((1+a)(1+b)(1+c)\geq (1+\sqrt[3]{abc})^{3}\) với \(a,b,c\geq 0\).
  11. Đề bài: Chứng minh rằng: $C^{0}_{n}+C^{1}_{n}.n+C^{2}_{n}.n^{2}+…+C^{n}_{n}.n^{n}\geq 2^{n}.n!$ với $\forall n \in Z,n\geq 2$
  12. Đề bài: Cho ba số $a,b,c$ thỏa mãn $a\geq 1,b\geq 1,c\geq 1$. Chứng minh rằng:     $\sqrt{(a+1)(b-1)}+\sqrt{(b+1)(c-1)}+\sqrt{(c+1)(a-1)}
  13. Đề bài: Cho $a,b,c$ là $3$ cạnh $\triangle ABC$.Chứng minh rằng:$a) \frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c} \geq 3$$b) \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \sqrt{\frac{3}{2Rr}}$(Với $R,r$ là bán kính đường tròn ngoại,nội tiếp $\triangle ABC$ tương ứng)
  14. Đề bài: Chứng minh rằng với mọi số dương $a, b, c$ ta luôn có bất đẳng thức:                 \(\frac{1}{{{a^3} + {b^3} + abc}} + \frac{1}{{{b^3} + {c^3} + abc}} + \frac{1}{{{c^3} + {a^3} + abc}} \le \frac{1}{{abc}}\)
  15. Đề bài: Cho ba số không âm $x,y,z$ và thoả mãn điều kiện $x+y+z=1$.Chứng minh $x^3+y^3+z^3\geq \frac{1}{9}$.

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.