• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Hình học không gian / Đề bài: Cho hình chóp $S.ABCD$ có đáy $ABCD$ là nửa lục giác đều nội tiếp đường tròn đường kính $AB=2a,SA=a\sqrt{3} $ và vuông góc với mặt phẳng $(ABCD)$$a.$ Tính góc giữa hai mặt phẳng $(SAD)$ và $(SBC)$$b.$ Tính góc giữa hai mặt phẳng $(SBC)$ và $(SCD)$

Đề bài: Cho hình chóp $S.ABCD$ có đáy $ABCD$ là nửa lục giác đều nội tiếp đường tròn đường kính $AB=2a,SA=a\sqrt{3} $ và vuông góc với mặt phẳng $(ABCD)$$a.$ Tính góc giữa hai mặt phẳng $(SAD)$ và $(SBC)$$b.$ Tính góc giữa hai mặt phẳng $(SBC)$ và $(SCD)$

Ngày 26/10/2020 Thuộc chủ đề:Hình học không gian Tag với:Hình học không gian

Đề bài: Cho hình chóp $S.ABCD$ có đáy $ABCD$ là nửa lục giác đều nội tiếp đường tròn đường kính $AB=2a,SA=a\sqrt{3} $ và vuông góc với mặt phẳng $(ABCD)$$a.$ Tính góc giữa hai mặt phẳng $(SAD)$ và $(SBC)$$b.$ Tính góc giữa hai mặt phẳng $(SBC)$ và $(SCD)$

hinh hoc khong gian

Lời giải

Đề bài: Cho hình chóp $S.ABCD$ có đáy $ABCD$ là nửa lục giác đều nội tiếp đường tròn đường kính $AB=2a,SA=asqrt{3} $ và vuông góc với mặt phẳng $(ABCD)$$a.$ Tính góc giữa hai mặt phẳng $(SAD)$ và $(SBC)$$b.$ Tính góc giữa hai mặt phẳng $(SBC)$ và $(SCD)$ 1
$a.$ Ta có thể lựa chọn một trong hai cách trình bày sau :
Cách $1:$ (Dựng góc dựa trên giao tuyến) : Giả sử :
$AD\cap BD$ vì $ABCD$ là nủa lục giác đều
$SA\bot BD$ giả thiết
suy ra :
$BD\bot (SAD)\Rightarrow  BD\bot SE$
Hạ $DF\bot SE$ tại $F$ suy ra :
$(BDF)\bot SE$
Như vậy ta được một góc giữa hai mặt phẳng $(SAD)$ và $(SBC)$ là $\widehat{BFD} $
Vì $\Delta ABE$ đều nên $AE=AB=2a$
Vì $\Delta CDE$ đều nên $DE=CD=a$
Trong $\Delta SAE$ vuông tại $S$ ta có :
$SE^2=SA^2+AE^2=(a\sqrt{3} )^2+(2a)^2=7a^2\Rightarrow  SE=a\sqrt{7} $
Hai tam giác vuông $SAE,DFE$ có chung góc $\widehat{E} $ nên chúng đồng dạng, suy ra :
$\frac{DF}{SA}=\frac{DE}{SE}\Rightarrow  DF=\frac{SA.DE}{SE}=\frac{a\sqrt{3}.a }{a\sqrt{7} }    =\frac{a\sqrt{21} }{7} $
Trong $\Delta ABD$ vuông tại $A$ ta có :$BD=ABsin\widehat{BAD}=2a.cos60^0=a\sqrt{3}  $
Trong $\Delta BDF$ vuông tại $D$ ta có :
$tan\widehat{BFD}=\frac{BD}{DE}=\frac{a\sqrt{3} }{\frac{a\sqrt{21} }{7} }   =\sqrt{7}\Rightarrow  \widehat{BFD}  $ nhọn
Vậy ta được $tan((SAD),(SBC))=\sqrt{7} $
Cách $2:$ Nhận xét rằng :
$AD\bot BD$ vì $ABCD$ là nửa lục giác đều
$SA\bot BD$ giả thiết
suy ra $BD\bot (SAD)       (1)$
Trong $(SAC)$ hạ $AJ\bot SC$ tại $J$ ta có
$BC\bot AC$ vì $ABCD$ là nửa lục giác đều nội tiếp
$BC\bot SA$ giả thiết
suy ra $BC\bot (SAC)\Rightarrow  BC\bot AJ\Rightarrow  AJ\bot (SBC)    (2)$
Trong $(SAc)$ hạ $OK\bot SC$ tại $K$ suy ra $OK//AJ            (3)$
Từ $(1),(2),(3)$ suy ra :
$((SAD),(SBC))=(BD,AJ)=(BD,OK)=\widehat{KOB} $
Trong nửa lục giác đều $ABCD$ ta có:
$OC=\frac{2}{3}.\frac{a\sqrt{3} }{2}=\frac{a\sqrt{3} }{3}   $
$OB=\frac{a\sqrt{3} }{2} +\frac{1}{3} .\frac{a\sqrt{3} }{2} =\frac{2a\sqrt{3} }{2} $
Trong $\Delta SAC$ vuông tại $S$ ta có :
$SC^2=SA^2+AC^2=SA^2+(AB^2-BC^2)$
$=(a\sqrt{3} )^2+(4a^2-a^2)=6a^2\Rightarrow  SC=a\sqrt{6} $
Hai tam giác vuông $SAC,OKC$ có chung góc nhon $\widehat{C} $ nên chúng đồng dạng, suy ra :
$\frac{OK}{SA}=\frac{OC}{SC}\Rightarrow  OK=\frac{SA.OC}{SC}=\frac{a\sqrt{3}.\frac{a\sqrt{3} }{3}  }{a\sqrt{6} }    =\frac{a\sqrt{6} }{6} $
Trong $\Delta KOB$ vuông tại $K$ ta có:
$cos\widehat{KOB}=\frac{OK}{OB}=\frac{\frac{a\sqrt{6} }{6} }{\frac{2a\sqrt{3} }{3} }   =\frac{\sqrt{2} }{4} $
Vậy ta được $cos((SAD),(SBC))=\frac{\sqrt{2} }{4} $
Đề bài: Cho hình chóp $S.ABCD$ có đáy $ABCD$ là nửa lục giác đều nội tiếp đường tròn đường kính $AB=2a,SA=asqrt{3} $ và vuông góc với mặt phẳng $(ABCD)$$a.$ Tính góc giữa hai mặt phẳng $(SAD)$ và $(SBC)$$b.$ Tính góc giữa hai mặt phẳng $(SBC)$ và $(SCD)$ 2
$b.$ Trong $(SAC)$ hạ $AJ\bot SC$ tại $J$ ta có :
$BC\bot AC$ vì $ABCD$ là nửa lục giác đều nội tiếp
$BC\bot SA$ giả thiết
suy ra  :
$BC\bot (SAC)\Rightarrow  BC\bot AJ\Rightarrow  AJ\bot (SBC)       (4)$
Hạ $AH\bot CD$ tại $H$ suy ra :
$\begin{cases} CD\bot AH\\CD\bot SA\end{cases} \Rightarrow  CD\bot (SAH)$
$\Rightarrow  (SCD)\bot (SAH)$ và $(SCD)\bot (SAH)=SH$
Hạ $AI\bot SH$ tại $I$ suy ra $AI\bot (SCD)       (5)$
Từ $(4),(5)$ suy ra
$((SCD),(SBC))=\widehat{IAJ} $
Trong $\Delta SAH$ vuông tại $A$ ta có :
$AH=\frac{a\sqrt{3} }{2} $
$\frac{1}{AI^2}=\frac{1}{SA^2}+\frac{1}{AH^2}   =\frac{1}{(a\sqrt{3} )^2}+\frac{1}{(\frac{a\sqrt{3} }{2} )^2}  =\frac{5}{3a^2} \Rightarrow  AI=\frac{a\sqrt{15} }{5} $
Trong $\Delta SAC$ vuông tại $A$ ta có :
$AC=SA=a\sqrt{3}\Rightarrow  AJ=\frac{1}{2}  SC=\frac{SA\sqrt{2} }{2} =\frac{a\sqrt{6} }{2} $
Trong $\Delta AIJ$ vuông tại $I$ ta có :
$cos\widehat{IAJ}=\frac{AI}{AJ}=\frac{\frac{a\sqrt{15} }{5} }{\frac{a\sqrt{6} }{2} }   =\frac{\sqrt{10} }{5} $
Vậy ta được $cos((SCD),(SBC))=\frac{\sqrt{10} }{5} $

Bài liên quan:

  1. Tài liệu chuyên Toán THPT chuyên đề Hình học không gian
  2. Đề bài: Cho hình chóp $S.ABC$ trong đó có đáy là tam giác vuông tại $A$. Giả sử $SA$ vuông góc với đáy. Biết $AB=c, AC=b, SA=a$. a) Xác định tâm $I$ và bán kính $R$ của hình cầu ngoại tiếp hình chóp $S.ABC$.b) Gọi $G$ là trọng tâm tam giác $SBC$. Chứng minh $A,G,I$ thẳng hàng.
  3. Đề bài: Cho tứ diện $ABCD$. Gọi $M, N$ lần lượt là trung điểm của $AC$ và $BC$. Gọi $P$ là điểm nằm trên $BD$, mà $P$ không trùng với trung điểm của $BD$.a) $MP$ có cắt $AD$ không, tại sao?b) Tìm giao điểm của mặt phẳng $(MNP)$ và các đường thẳng $CD, AD$. Hai giao điểm này có vị trí thế nào so với điểm $M$?c) Bạn có nhận xét gì về giả thiết của bài toán?
  4. Đề bài: Cho hình chóp $S.ABC$ có $SA=a$ và vuông góc với mặt phẳng $(ABC),SB=2a,SC=a\sqrt{2} ,\widehat{SBC}=90^0$$a.$ Tính góc $\varphi$ giữa hai mặt phẳng $(ABC)$ và $(SBC)$$b.$ Tính diện tích $\Delta ABC$
  5. Đề bài: Cho hình hộp $ABCD.A'B'C'D'$ với tâm $O$ và $AB=a, AD=b, AA'=c.$Với mọi điểm $M$ ta đặt $T=MA^2+MB^2+MC^2+MD^2+MA'^2+MB'^2+MC'^2+MD'^2$Chứng minh rằng $T=8MO^2+2(a^2+b^2+c^2)$. Hãy xác định vị trí của điểm $M$ để $T$ đạt giá trị bé nhất.
  6. Đề bài: Trong mặt phẳng $(P)$ cho tam giác $ABC$ vuông tại $C, AB=2a,\widehat{CAB}=60^0$, đoạn $SA=h$ và $SA$ vuông góc với $(P)$. Tìm $h$ sao cho góc giữa hai mặt phẳng $(SAB),(SBC)$ bằng $60^0$.
  7. Đề bài: Trên hai mặt phẳng $(P)$ và $(P')$ song song nhau, ta vẽ tương ứng hai đường tròn $(O, R)$ và $(O', R')$, với $OO'\bot (P)$. Gọi $OA$ và $O'B$ theo thứ tự là hai bán kính của hai đường tròn trên sao cho $OA\bot OB$. Cho $OO'=h$.a) Vẽ đường vuông góc chung của $AB$ và $OO'$.b) Chứng minh đường vuông góc chung này qua một điểm cố định. Hãy tìm quỹ tích đầu mút di động của đoạn vuông góc chung này.
  8. Đề bài: Cho hình lập phương $ABCD.A'B'C'D'$. Tìm số đo của góc tạo bởi hai mặt phẳng $(BA'C);(D'AC)$.
  9. Đề bài: Cho hình lập phương $ABCD. A'B'C'D'$ biết bán kính hình cầu nội tiếp trong tứ diện $ACB'D'$ bằng $r$a) Tính diện tích toàn phần cửa tứ diện $ACB'D'$ theo $r$b) Tính thể tích khối lập phương $ABCD. A'B'C'D'$ theo $a$
  10. Đề bài: Cho hình chóp $S.ABCD$ đáy $ABCD$ là hình thang, đáy lớn $AB=3a,AD=CD=a$. Mặt bên $(SAB) $ là tam giác cân đỉnh $S$ với $SA=2a,\alpha$ là mặt phẳng di động song song với $(SAB)$ cắt các cạnh $AD,BC,SC,SD$ theo thứ tự tại $M,N,P,Q$$a.$ Chứng minh $MNPQ$ là hình thang cân$b.$ Đặt $x=AM$ với $0
  11. Đề bài: Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$. Gọi $M$ và $N$ lần lượt là trung điểm của các cạnh $AB$ và $AD, H$ là giao điểm của $CN$ và $DM.$ Biết $SH$ vuông góc với mặt phẳng $ABCD$ và $SH$ =$a \sqrt{ 3}.$ Tính thể tích khối chóp $S.CDNM$ và khoảng cách giữa hai đường thẳng $DM$ và $SC$ theo $a.$
  12. Đề bài: Cho hình tứ diện $ABCD$. Gọi $A',B',C',D'$ theo thứ tự là trọng tâm các tam giác $BCD,ACD,ABD,ABC$. Chứng minh rằng có phép vị tự biến tứ diện $ABCD$ thành tứ diện $A'B'C'D'$.
  13. Đề bài: Cho hình chóp $S.ABCD.$Gọi $D_{1},D_{2},D_{3}$ lần lượt là điểm đối xứng của điểm $D'$ qua $A,B,C$.Chứng minh rằng $B$ là trọng tâm của tứ diện $D_{1}D_{2}D_{3}D'$.
  14. Đề bài: Cho hình chóp tứ giác $S.ABCD$ có đáy là hình bình hành. Gọi $M$ và $N$ theo thứ tự là trung điểm của $AB$ và $SC$.a) Xác định các giao điểm $I$ và $J$ của mp$(SBD)$ theo thứ tự với các đường thẳng $AN$ và $MN$.b) Tính các tỉ số $\frac{IA}{IN}, \frac{JM}{JN}, \frac{IB}{IJ}.$ 
  15. Đề bài: Cho tứ diện $OABC$ có $OA,OB,OC$ đôi một vuông góc $OA=a, OB=b,OC=c$a) Gọi $I$ là tâm mặt cầu nội tiếp $(S)$ của $OABC$. Tính bán kính $r$ của $(S)$b) Gọi $M, N, P $ là trung điểm $BC, CA, AB$. Chứng minh rằng góc nhị diện góc cạnh $OM$ của $OMNP$ là vuông $\Rightarrow  \frac{1}{a^2}=\frac{1}{b^2}+\frac{1}{c^2}   $

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.