• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Khối đa diện / Đề: Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, D là trung điểm BC. Biết SAD là tam giác đều và mặt phẳng (SAD) vuông góc với mặt phẳng (ABC). Tính khoảng cách từ C đến mặt phẳng (SAB).

Đề: Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, D là trung điểm BC. Biết SAD là tam giác đều và mặt phẳng (SAD) vuông góc với mặt phẳng (ABC). Tính khoảng cách từ C đến mặt phẳng (SAB).

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

trac nghiem khoang cach

  • Câu hỏi:

    Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, D là trung điểm BC. Biết SAD là tam giác đều và mặt phẳng (SAD) vuông góc với mặt phẳng (ABC). Tính khoảng cách từ C đến mặt phẳng (SAB).

    • A. \(\frac{{6\sqrt {13} a}}{{13}}\)  
    • B. \(\frac{{6\sqrt {13} a}}{7}\)
    • C.  \(\frac{{4\sqrt {13} a}}{7}\) 
    • D. \(\frac{{4\sqrt {13} a}}{{13}}\)
    Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
    Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài.

    Đáp án đúng: A

    Đề: Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, D là trung điểm BC. Biết SAD là tam giác đều và mặt phẳng (SAD) vuông góc với mặt phẳng (ABC). Tính khoảng cách từ C đến mặt phẳng (SAB). 1

    Gọi H là trung điểm của \(AD \Rightarrow SH \bot \left( {ABC} \right)\)

    Ta có: \(AD = \sqrt {{{\left( {2a} \right)}^2} – {a^2}}  = a\sqrt 3 ;SH = \sqrt {{{\left( {a\sqrt 3 } \right)}^2} – {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}  = \frac{{3a}}{2}\)

    Gọi E là trung điểm của AB. Qua H kẻ đường thẳng song song với CE, giao với AB tại I.

    Kẻ \(KH \bot SI\). Ta có: \(KH \bot \left( {SAB} \right)\)

    Ta có: \(CE = AD = a\sqrt 3 ;EG = \frac{{CE}}{3} = \frac{{a\sqrt 3 }}{3};\frac{{AH}}{{AG}} = \frac{3}{4}\)

    \(\frac{{HI}}{{EG}} = \frac{{AH}}{{AG}} = \frac{3}{4} \Rightarrow HI = \frac{3}{4}EG = \frac{3}{4}.\frac{{a\sqrt 3 }}{3} = \frac{{a\sqrt 3 }}{4}\)

    \(\frac{1}{{K{H^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{I^2}}} = \frac{1}{{{{\left( {\frac{{3a}}{2}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{4}} \right)}^2}}} = \frac{{52}}{{9{a^2}}} \Rightarrow HK = \frac{{3a}}{{2\sqrt {13} }}\)

    Ta có \(HI = \frac{3}{4}EG = \frac{3}{4}.\frac{1}{3}CE = \frac{1}{4}CE \Rightarrow d\left( {C;\left( {SAB} \right)} \right) = 4d\left( {H;\left( {SAB} \right)} \right) = 4.\frac{{3a}}{{2\sqrt {13} }} = \frac{{6a}}{{\sqrt {13} }}\)

  • =======
    Xem lý thuyết về Tính khoảng cách hình học 11

    Bài liên quan:

    1. Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a,\,\,SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\); góc giữa đường thẳng \(SB\) và mặt phẳng\(ABC\) bằng \(60^\circ \). Gọi \(M\) là trung điểm cạnh \(AB\). Khoảng cách từ \(B\) đến \(\left( {SMC} \right)\) bằng

    2. Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh đều bằng \(a\).Gọi \(O\) là giao điểm của hai đường chéo.Tính khoảng cách từ \(O\) đến \((SCD)\).

    3. Cho hình hộp chữ nhật \(ABCD.A’B’C’D’\) có đáy là hình vuông cạnh \(a\), cạnh bên \(AA’ = a\sqrt 3 \). Khoảng cách giữa hai đường thẳng \(BD\) và \(D’C\) bằng

    4. Cho hình lập phương \(ABCD.A’B’C’D’\) cạnh \(a\). Khoảng cách giữa hai đường thẳng \(B’D\) và \(D’C\) tính theo \(a\) bằng

    5. Cho hình lăng trụ đứng \(ABCD.A’B’C’D’\) có đáy hình vuông cạnh \(a\), \(AA’ = a\sqrt 2 \). Tính khoảng cách từ \(C\) đến mặt phẳng \(\left( {A’BD} \right)\).

    6. Cho hình lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông cân tại \(A,\) \(BC = AA’ = a\sqrt 2 \). Tính khoảng cách từ \(C\) đến mặt phẳng \(\left( {ABB’A’} \right)\).

    7. Cho hình chóp tam giác đều \(S.ABC\) có tất các cạnh đều bằng \(a\).Gọi \(O\) là tâm của tam giác \(ABC\).Tính khoảng cách từ \(O\) đến \((SCB)\).

    8. Cho hình chóp\(\frac{{27}}{2}V\)có đáy\(\frac{9}{4}V\)là hình thoi cạnh \(a\),\(\widehat {BAD} = {60^\circ }\), tam giác\(SAD\)đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách\(\frac{{SM}}{{ME}} = 2\)giữa hai đường thẳng\(SA\)và\(BD\)bằng

    9. Cho lăng trụ tam giác $A B C A^{\prime} B^{\prime} C^{\prime}$ có đáy $A B C$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $A^{\prime}$ trên mặt phẳng $(A B C)$ là trung điểm $O_{O}^{\top} \mathrm{c}^{\prime} \operatorname{anh} A B$. Góc giữa đường thẳng $A A^{\prime}$ và mặt phẳng $\left(A^{\prime} B^{\prime} C^{\prime}\right)$ là $60^{\circ} .$ Gọi $I$ là trung điểm cạnh $B^{\prime} C^{\prime}$. Khoảng cách từ $I$ đến đường thẳng $A^{\prime} C$ bằng

    10. Cho hình chóp tứ giác đềucó tất các các cạnhbằng. Khoảng cách từ điểmđến mặt phẳng\(\left( {SBC} \right)\)bằng

    11. Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình thang vuông tại\(A\)và\(B\), \(AB = BC = a\),\(\Delta ABO\).\(SA\)vuông góc với mặt phẳng\(\left( {ABCD} \right)\), đường thẳng\(SC\)tạo với mặt phẳng\(\left( {SAB} \right)\)một góc \({30^0}\). Khoảng cách từ\(A\)đến mặt phẳng\(\left( {SCD} \right)\)bằng

    12. Cho hình lăng trụ đều\(ABC. A’B’C’\)có thể tích\(V = \frac{{{a^3}\sqrt 3 }}{2}\), tam giác\(AB’C’\)có diện tích là\(\frac{{{a^2}\sqrt {19} }}{4}\). Gọi\(M\) là trung điểm của cạnh\(A{A^\prime }\). Khoảng cách từ điểm\(M\) đến mặt phẳng\(\left( {AB’C’} \right)\)bằng

    13. Cholăng trụ\(ABC \cdot A’B’C’\)có đáy là tam giác đều cạnh\(a\).Hình chiếu vuônggóc của\(B’\)lên mặt phẳng\(\left( {ABC} \right)\)trùng với trọng tâm\(G\)của tam giác\(ABC\).Cạnh bên\(BB’\)hợp với đáy\(\left( {ABC} \right)\) góc\({60^\circ }\). Khoảng cách từ\(A\)đến mặt phẳng\(\left( {BCC’B’} \right)\)là

    14. Cho hình lăng trụ đứng \(ABC. {A_1}{B_1}{C_1}\) \(A{A_1} = 2a\sqrt 5 \)và\(\widehat {BAC} = {120^\circ }\) có\(AB = a\), \(AC = 2a\),Gọi\(I\),\(K\) lần lượt là trung điểm của các cạnh\(B{B_1}\),\(C{C_1}\).Tính khoảng cách từ điểm\(I\)đến mặt phẳng\(\left( {{A_1}BK} \right)\)

    15. Cho hình chóp\(S.ABC\)có đáy\(ABC\)là tam giác cân,\(AB = AC = 2a\), góc\(\widehat {BAC} = {120^\circ }\). Tam giác\(SAB\)cân tại\(S\)và nằm trong mặt phẳng vuông góc với đáy, góc tạo bởi mặt phẳng\(\left( {SBC} \right)\)và mặt phẳng đáy\(\left( {ABC} \right)\)bằng\({60^\circ }\). Tính khoảng cách giữa hai đường thẳng\(AC\)và\(SB\)

    Reader Interactions

    Để lại một bình luận Hủy

    Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

    Sidebar chính

    MỤC LỤC

    Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
    Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.