Câu hỏi: Gọi \(V_1\) là thể tích giữa khối lập phương và \(V_2\) là thể tích khối cầu ngoại tiếp khối lập phương đó. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\) A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{3\pi }}{{2\sqrt 3 }}.\) B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{\pi \sqrt 2 }}{3}.\) C. \(\frac{{{V_1}}}{{{V_2}}} = … [Đọc thêm...] vềĐề: Gọi \(V_1\) là thể tích giữa khối lập phương và \(V_2\) là thể tích khối cầu ngoại tiếp khối lập phương đó. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)
Trắc nghiệm Mặt Cầu
Đề: Cho khối cầu ngoại tiếp khối hộp chữ nhật có 3 kích thước lần lượt là a, 2a, 2a. Tính thể tích V của khối cầu.
Câu hỏi: Cho khối cầu ngoại tiếp khối hộp chữ nhật có 3 kích thước lần lượt là a, 2a, 2a. Tính thể tích V của khối cầu. A. \(V = \frac{{9\pi {a^3}}}{2}\) B. \(V = 36\pi {a^3}\) C. \(V = \frac{{9\pi {a^2}}}{2}\) D. \(V = 18\pi {a^3}\) Đáp án đúng: B Bán kính khối cầu là … [Đọc thêm...] vềĐề: Cho khối cầu ngoại tiếp khối hộp chữ nhật có 3 kích thước lần lượt là a, 2a, 2a. Tính thể tích V của khối cầu.
Đề: Có một hộp nhựa hình lập phương người ta bỏ vào hộp đó 1 quả bóng đá. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}},\) trong đó V1 là tổng thế tích của quả bóng đá, V2 là thể tích của chiếc hộp đựng bóng. Biết rằng đường tròn lớn trên quả bóng có thể nội tiếp bốn mặt hình vuông của chiếc hộp.
Câu hỏi: Có một hộp nhựa hình lập phương người ta bỏ vào hộp đó 1 quả bóng đá. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}},\) trong đó V1 là tổng thế tích của quả bóng đá, V2 là thể tích của chiếc hộp đựng bóng. Biết rằng đường tròn lớn trên quả bóng có thể nội tiếp bốn mặt hình vuông của chiếc hộp. A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{\pi … [Đọc thêm...] vềĐề: Có một hộp nhựa hình lập phương người ta bỏ vào hộp đó 1 quả bóng đá. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}},\) trong đó V1 là tổng thế tích của quả bóng đá, V2 là thể tích của chiếc hộp đựng bóng. Biết rằng đường tròn lớn trên quả bóng có thể nội tiếp bốn mặt hình vuông của chiếc hộp.
Đề: Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông tại A. Biết rằng \(AB = {\rm{AA'}} = a;\,\,AC = 2{\rm{a}}.\) Gọi M là trung điểm của AC. Bán kính của mặt cầu ngoại tiếp tứ diện \(M.A'B'C'\) là:
Câu hỏi: Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông tại A. Biết rằng \(AB = {\rm{AA'}} = a;\,\,AC = 2{\rm{a}}.\) Gọi M là trung điểm của AC. Bán kính của mặt cầu ngoại tiếp tứ diện \(M.A'B'C'\) là: A. \(\frac{{a\sqrt 5 }}{2}.\) B. a C. \(\frac{{a\sqrt 3 }}{2}.\) D. … [Đọc thêm...] vềĐề: Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông tại A. Biết rằng \(AB = {\rm{AA'}} = a;\,\,AC = 2{\rm{a}}.\) Gọi M là trung điểm của AC. Bán kính của mặt cầu ngoại tiếp tứ diện \(M.A'B'C'\) là:
Đề: Trong không gian với hệ tọa độ Oxyz, gọi A, B, C lần lượt là hình chiếu vuông góc của điểm \(S\left( {2; – 4;4} \right)\) trên các mặt phẳng (Oyz), (Ozx), (Oxy). Tính diện tích của mặt cầu ngoại tiếp hình chóp S.ABC.
Câu hỏi: Trong không gian với hệ tọa độ Oxyz, gọi A, B, C lần lượt là hình chiếu vuông góc của điểm \(S\left( {2; - 4;4} \right)\) trên các mặt phẳng (Oyz), (Ozx), (Oxy). Tính diện tích của mặt cầu ngoại tiếp hình chóp S.ABC. A. \(4\pi \) B. \(25\pi \) C. \(36\pi \) D. \(56\pi \) … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, gọi A, B, C lần lượt là hình chiếu vuông góc của điểm \(S\left( {2; – 4;4} \right)\) trên các mặt phẳng (Oyz), (Ozx), (Oxy). Tính diện tích của mặt cầu ngoại tiếp hình chóp S.ABC.
Đề: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C, CA = a, mặt bên SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (ABC). Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC.
Câu hỏi: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C, CA = a, mặt bên SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (ABC). Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC. A. \(R = \frac{{a\sqrt 2 }}{2}\) B. \(R = \frac{{a\sqrt 3 }}{2}\) C. \(R = … [Đọc thêm...] vềĐề: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C, CA = a, mặt bên SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (ABC). Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC.
Đề: Cho mặt cầu (S) tâm I. Một mặt phẳng (P) cách I một khoảng bằng 5(cm) cắt mặt cầu (S) theo một đường tròn đi qua ba điểm A, B, C. Biết AB = 6(cm), BC = 8(cm), CA = 10(cm). Tính diện tích xung quanh của mặt cầu (S).
Câu hỏi: Cho mặt cầu (S) tâm I. Một mặt phẳng (P) cách I một khoảng bằng 5(cm) cắt mặt cầu (S) theo một đường tròn đi qua ba điểm A, B, C. Biết AB = 6(cm), BC = 8(cm), CA = 10(cm). Tính diện tích xung quanh của mặt cầu (S). A. \(S = 100\pi \sqrt 2 \left( {c{m^2}} \right)\) B. \(S = 100\pi \left( {c{m^2}} … [Đọc thêm...] vềĐề: Cho mặt cầu (S) tâm I. Một mặt phẳng (P) cách I một khoảng bằng 5(cm) cắt mặt cầu (S) theo một đường tròn đi qua ba điểm A, B, C. Biết AB = 6(cm), BC = 8(cm), CA = 10(cm). Tính diện tích xung quanh của mặt cầu (S).
Đề: Cho tứ diện \(S.ABC\) có tam giác \(ABC\) vuông tại \(B\), \(AB = a\), \(BC = a\sqrt 3 \) và \(SA = a\sqrt 2 \),\(SB = a\sqrt 2 \), \(SC = a\sqrt 5 \).Tính bán kính mặt cầu ngoại tiếp tứ diện \(S.ABC\).
Câu hỏi: Cho tứ diện \(S.ABC\) có tam giác \(ABC\) vuông tại \(B\), \(AB = a\), \(BC = a\sqrt 3 \) và \(SA = a\sqrt 2 \),\(SB = a\sqrt 2 \), \(SC = a\sqrt 5 \).Tính bán kính mặt cầu ngoại tiếp tứ diện \(S.ABC\). A. \(R = \frac{{a\sqrt {259} }}{7}.\) B. \(R = \frac{{a\sqrt {259} }}{{14}}.\) C. \(R = … [Đọc thêm...] vềĐề: Cho tứ diện \(S.ABC\) có tam giác \(ABC\) vuông tại \(B\), \(AB = a\), \(BC = a\sqrt 3 \) và \(SA = a\sqrt 2 \),\(SB = a\sqrt 2 \), \(SC = a\sqrt 5 \).Tính bán kính mặt cầu ngoại tiếp tứ diện \(S.ABC\).
Đề: Cho tam giác ABC có độ dài ba cạnh là 13, 14, 15. Một mặt cầu tâm O, bán kính R=5 tiếp xúc với ba cạnh của tam giác ABC. Tính khoảng cách từ tâm của mặt cầu đến mặt phẳng chứa tam giác.
Câu hỏi: Cho tam giác ABC có độ dài ba cạnh là 13, 14, 15. Một mặt cầu tâm O, bán kính R=5 tiếp xúc với ba cạnh của tam giác ABC. Tính khoảng cách từ tâm của mặt cầu đến mặt phẳng chứa tam giác. A. 4 B. 5 C. 2 D. 3 Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. … [Đọc thêm...] vềĐề: Cho tam giác ABC có độ dài ba cạnh là 13, 14, 15. Một mặt cầu tâm O, bán kính R=5 tiếp xúc với ba cạnh của tam giác ABC. Tính khoảng cách từ tâm của mặt cầu đến mặt phẳng chứa tam giác.
Đề: Cho tứ diện đều ABCD cạnh bằng x. Mặt cầu tiếp xúc với 6 cạnh tứ diện đều ABCD có bán kính bằng:
Câu hỏi: Cho tứ diện đều ABCD cạnh bằng x. Mặt cầu tiếp xúc với 6 cạnh tứ diện đều ABCD có bán kính bằng: A. \(\frac{{3{\rm{x}}\sqrt 2 }}{4}.\) B. \(\frac{{3{\rm{x}}\sqrt 2 }}{2}.\) C. \(\frac{{3{\rm{x}}\sqrt 2 }}{6}.\) D. \(\frac{{{\rm{x}}\sqrt 2 }}{4}.\) Hãy chọn trả lời … [Đọc thêm...] vềĐề: Cho tứ diện đều ABCD cạnh bằng x. Mặt cầu tiếp xúc với 6 cạnh tứ diện đều ABCD có bán kính bằng: