• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Mặt Cầu / Đề: Cho tứ diện đều ABCD cạnh bằng x. Mặt cầu tiếp xúc với 6 cạnh tứ diện đều ABCD có bán kính bằng:

Đề: Cho tứ diện đều ABCD cạnh bằng x. Mặt cầu tiếp xúc với 6 cạnh tứ diện đều ABCD có bán kính bằng:

Ngày 25/05/2019 Thuộc chủ đề:Trắc nghiệm Mặt Cầu Tag với:Trac nghiem mat cau nhan biet

trac nghiem khoi tron xoay

Câu hỏi:

Cho tứ diện đều ABCD cạnh bằng x. Mặt cầu tiếp xúc với 6 cạnh tứ diện đều ABCD có bán kính bằng:

  • A. \(\frac{{3{\rm{x}}\sqrt 2 }}{4}.\) 
  • B. \(\frac{{3{\rm{x}}\sqrt 2 }}{2}.\) 
  • C.  \(\frac{{3{\rm{x}}\sqrt 2 }}{6}.\)  
  • D. \(\frac{{{\rm{x}}\sqrt 2 }}{4}.\)
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài.

Đáp án đúng: D

Đề: Cho tứ diện đều ABCD cạnh bằng x. Mặt cầu tiếp xúc với 6 cạnh tứ diện đều ABCD có bán kính bằng: 1

Do tứ diện ABCD đều nên tâm mặt cầu tiếp xúc với 6 cạnh cũng trùng với tâm mặt cầu ngoại tiếp tứ diện.

Gọi H là tâm đường tròn ngoại tiếp tam giác BCD. Suy ra H chính là trọng tâm tam giác BCD.

Khi đó AH chính là trục đường tròn ngoài tiếp tam giác BCD.

Gọi K là trung điểm của AB.

Mặt phẳng trung trực của AB qua K cắt AH tại I chính là tâm mặt cầu ngoại tiếp tứ diện đều ABCD.

Ta có: \(r = IK.\) Mặt khác \(\Delta AKI \sim \Delta AHB \Rightarrow \frac{{AK}}{{AH}} = \frac{{AI}}{{AB}} = \frac{{IK}}{{HB}}.\)

\( \Leftrightarrow \frac{{AB}}{{2{\rm{A}}H}} = \frac{{IK}}{{HB}},\) trong đó \(AB = x,\,\,HB = \frac{{x\sqrt 3 }}{3}.\)

\(AH = \sqrt {A{B^2} – H{B^2}}  = \frac{{x\sqrt 6 }}{3} \Rightarrow r = IK = \frac{{x\sqrt 2 }}{4}.\)

=======
Xem thêm Lý thuyết khối tròn xoay

Bài liên quan:

  1. Đề: Cho khối cầu ngoại tiếp khối hộp chữ nhật có 3 kích thước lần lượt là a, 2a, 2a. Tính thể tích V của khối cầu.
  2. Đề: Cho mặt cầu \(\left( S \right)\) có tâm I, bán kính R và mặt phẳng (P). Gọi I là khoảng cách từ I đến (P). Mệnh đề nào sau đây sai?
  3. Đề: Cho hình chóp tứ giác đều có tất cả các cạnh bằng \(5\sqrt 2 cm.\) Tính thể tích V của khối cầu ngoại tiếp trên.
  4. Đề: Cho hình lăng trụ lục giác đều có cạnh đáy bằng a, cạnh bên bằng 2a. Tính bán kính R của mặt cầu ngoại tiếp lăng trụ.
  5. Đề: Trong các hình sau, hình nào có mặt cầu ngoại tiếp?
  6. Đề: Cho mặt cầu (S) có diện tích mặt cầu bằng \(16\pi \) (đvdt). Tính thể tích khối cầu.

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.