Học Bài 3. Các hệ thức lượng trong tam giác và giải tam giác – Chương 2 - hình học 10 =========== Gồm các bài học sau: … [Đọc thêm...] vềBài 3. Các hệ thức lượng trong tam giác và giải tam giác – Chương 2 – hình học 10
Toán lớp 10
NHẬN DẠNG TAM GIÁC
DẠNG TOÁN 4: NHẬN DẠNG TAM GIÁC. 1. PHƯƠNG PHÁP GIẢI Sử dụng định lí côsin, định lí sin, công thức đường trung tuyến, công thức tính diện tích tam giác để biến đổi giả thiết về hệ thức liên hệ cạnh (hoặc góc) từ đó suy ra dạng của tam giác. 2. CÁC VÍ DỤ Ví dụ 1 : Cho tam giác $ABC$ thoả mãn $\sin C = 2\sin B\cos A.$ Chứng minh rằng tam giác $ABC$ cân. Áp dụng … [Đọc thêm...] vềNHẬN DẠNG TAM GIÁC
CHỨNG MINH ĐẲNG THỨC LIÊN QUAN ĐẾN CÁC YẾU TỐ CỦA TAM GIÁC – TỨ GIÁC
DẠNG TOÁN 3: CHỨNG MINH ĐẲNG THỨC – BẤT ĐẲNG THỨC LIÊN QUAN ĐẾN CÁC YẾU TỐ CỦA TAM GIÁC – TỨ GIÁC. 1. PHƯƠNG PHÁP GIẢI Để chứng minh đẳng thức ta sử dụng các hệ thức cơ bản để biến đổi vế này thành vế kia, hai vế cùng bằng một vế hoặc biến đổi tương đương về một đẳng thức đúng. Để chứng minh bất đẳng thức ta sử dụng các hệ thức cơ bản, bất đẳng thức cạnh trong tam giác và … [Đọc thêm...] vềCHỨNG MINH ĐẲNG THỨC LIÊN QUAN ĐẾN CÁC YẾU TỐ CỦA TAM GIÁC – TỨ GIÁC
GIẢI TAM GIÁC
DẠNG TOÁN 2: GIẢI TAM GIÁC. 1. PHƯƠNG PHÁP Giải tam giác là tính các cạnh và các góc của tam giác dựa trên một số điều kiện cho trước. Trong các bài toán giải tam giác người ta thường cho tam giác với ba yếu tố như sau: biết một cạnh và hai góc kề cạnh đó, biết một góc và hai cạnh kề góc đó, biết ba cạnh. Để tìm các yếu tố còn lại ta sử dụng định lí côsin và định lí sin, … [Đọc thêm...] vềGIẢI TAM GIÁC
XÁC ĐỊNH CÁC YẾU TỐ TRONG TAM GIÁC
DẠNG TOÁN 1: XÁC ĐỊNH CÁC YẾU TỐ TRONG TAM GIÁC. 1. PHƯƠNG PHÁP Sử dụng định lí côsin và định lí sin. Sử dụng công thức xác định độ dài đường trung tuyến và mối liên hệ của các yếu tố trong các công thức tính diện tích trong tam giác. 2. CÁC VÍ DỤ Ví dụ 1 : Cho tam giác $ABC$ có $AB = 4$, $AC = 5$ và $\cos A = \frac{3}{5}.$ Tính cạnh $BC$ và độ dài đường cao kẻ từ … [Đọc thêm...] vềXÁC ĐỊNH CÁC YẾU TỐ TRONG TAM GIÁC
Lý thuyết Các hệ thức lượng trong tam giác
1. Định lí côsin trong tam giác Xét tam giác ABC vuông tại A, ta có: Ta đã biết rằng: \(BC^2=AB^2+AC^2\) hay \(\vec {BC}^2=\vec {AB}^2+\vec {AC}^2\) Chứng minh ngắn gọn theo tích vô hướng của hai vectơ ở bài học trước ta có được điều trên. Như vậy, ta có phát biểu về định lí côsin trong tam giác: Trong tam giác ABC, gọi \(Ab=c;AC=b;BC=a\), ta … [Đọc thêm...] vềLý thuyết Các hệ thức lượng trong tam giác
BIỂU THỨC TỌA ĐỘ CỦA TÍCH VÔ HƯỚNG
DẠNG TOÁN 4: BIỂU THỨC TỌA ĐỘ CỦA TÍCH VÔ HƯỚNG. 1. PHƯƠNG PHÁP GIẢI Cho $\vec a = \left( {{x_1};{y_1}} \right)$, $\vec b = \left( {{x_2};{y_2}} \right).$ Khi đó: + Tích vô hướng hai vectơ là $\vec a.\vec b = {x_1}{x_2} + {y_1}{y_2}.$ + Góc của hai vectơ được xác định bởi công thức: $\cos (\vec a,\vec b) = \frac{{\vec a.\vec b}}{{|\vec a||\vec b|}}$ $ = … [Đọc thêm...] vềBIỂU THỨC TỌA ĐỘ CỦA TÍCH VÔ HƯỚNG
TÌM TẬP HỢP ĐIỂM THỎA MÃN ĐẲNG THỨC VỀ TÍCH VÔ HƯỚNG HOẶC TÍCH ĐỘ DÀI
DẠNG TOÁN 3: TÌM TẬP HỢP ĐIỂM THỎA MÃN ĐẲNG THỨC VỀ TÍCH VÔ HƯỚNG HOẶC TÍCH ĐỘ DÀI. 1. PHƯƠNG PHÁP GIẢI Ta sử dụng các kết quả cơ bản sau: Cho $A$, $B$ là các điểm cố định. $M$ là điểm di động. + Nếu $|\overrightarrow {AM} | = k$ với $k$ là số thực dương cho trước thì tập hợp các điểm $M$ là đường tròn tâm $A$, bán kính $R = k.$ + Nếu $\overrightarrow {MA} … [Đọc thêm...] vềTÌM TẬP HỢP ĐIỂM THỎA MÃN ĐẲNG THỨC VỀ TÍCH VÔ HƯỚNG HOẶC TÍCH ĐỘ DÀI
CHỨNG MINH CÁC ĐẲNG THỨC VỀ TÍCH VÔ HƯỚNG HOẶC ĐỘ DÀI CỦA ĐOẠN THẲNG
DẠNG TOÁN 2: CHỨNG MINH CÁC ĐẲNG THỨC VỀ TÍCH VÔ HƯỚNG HOẶC ĐỘ DÀI CỦA ĐOẠN THẲNG. 1. PHƯƠNG PHÁP GIẢI Nếu trong đẳng thức chứa bình phương độ dài của đoạn thẳng thì ta chuyển về vectơ nhờ đẳng thức $A{B^2} = {\overrightarrow {AB} ^2}.$ Sử dụng các tính chất của tích vô hướng, các quy tắc phép toán vectơ. Sử dụng hằng đẳng thức vectơ về tích vô hướng. 2. CÁC VÍ … [Đọc thêm...] vềCHỨNG MINH CÁC ĐẲNG THỨC VỀ TÍCH VÔ HƯỚNG HOẶC ĐỘ DÀI CỦA ĐOẠN THẲNG
XÁC ĐỊNH BIỂU THỨC TÍCH VÔ HƯỚNG – GÓC GIỮA HAI VECTƠ
DẠNG TOÁN 1: XÁC ĐỊNH BIỂU THỨC TÍCH VÔ HƯỚNG – GÓC GIỮA HAI VECTƠ. 1. PHƯƠNG PHÁP GIẢI Dựa vào định nghĩa $\vec a.\vec b = |\vec a|.|\vec b|\cos (\vec a;\vec b).$ Sử dụng tính chất và các hằng đẳng thức của tích vô hướng của hai vectơ. 2. CÁC VÍ DỤ Bài 1: Tính tích vô hướng của \(\vec{a}(2;3)\) và \(\vec{b}(1;1)\) biết chúng tạo với nhau một góc \(30^o\) Hướng … [Đọc thêm...] vềXÁC ĐỊNH BIỂU THỨC TÍCH VÔ HƯỚNG – GÓC GIỮA HAI VECTƠ







