• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

(THPT Lương Thế Vinh – Hà Nội – 2022) Một téc nước hình trụ, đang chứa nước được đạat nằm ngang, có chiều dài \(3m\) và đường kính đáy \(1m\). Hiện tại mặt nước trong téc cách phía trển đỉnh của téc \(0,25\;m\) (xem hình vẽ). Tính thể tích của nước trong téc (kết quả làm tròn đến hàng phần nghìn)?

Đăng ngày: 14/06/2022 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

adsense
Câu hỏi:

(THPT Lương Thế Vinh – Hà Nội – 2022) Một téc nước hình trụ, đang chứa nước được đạat nằm ngang, có chiều dài \(3m\) và đường kính đáy \(1m\). Hiện tại mặt nước trong téc cách phía trển đỉnh của téc \(0,25\;m\) (xem hình vẽ). Tính thể tích của nước trong téc (kết quả làm tròn đến hàng phần nghìn)?

(THPT Lương Thế Vinh – Hà Nội – 2022) Một téc nước hình trụ, đang chứa nước được đạat nằm ngang, có chiều dài (3m) và đường kính đáy (1m). Hiện tại mặt nước trong téc cách phía trển đỉnh của téc (0,25;m) (xem hình vẽ). Tính thể tích của nước trong téc (kết quả làm tròn đến hàng phần nghìn)? 1

A. \(1,768\;{m^3}\).

B. \(1,167{m^3}\)

C. \(1,895{m^3}\).

D. \(1,896{m^3}\)

adsense

Lời giải:

Thế tích phần dầu còn lại sẽ bằng diện tích hình phẳng gạch sọc trong hình nhân với chiều dài của bồn (chiều cao của trụ).

(THPT Lương Thế Vinh – Hà Nội – 2022) Một téc nước hình trụ, đang chứa nước được đạat nằm ngang, có chiều dài (3m) và đường kính đáy (1m). Hiện tại mặt nước trong téc cách phía trển đỉnh của téc (0,25;m) (xem hình vẽ). Tính thể tích của nước trong téc (kết quả làm tròn đến hàng phần nghìn)? 2

Đường tròn có tâm \(O(0;0),R = 0,5\) có phương trình là \({x^2} + {y^2} = 0,25 \Leftrightarrow y = \pm \sqrt {0,25 – {x^2}} \). Diện tích hình gạch sọc chinh là diện tích hình phẳng giới hạn bởi các đường \(y = \sqrt {0,25 – {x^2}} ;y = – \sqrt {0,25 – {x^2}} ;x = – 0,5;x = 0,25\).

Do đó \(V = S.h = 3\int_{ – 0,5}^{0,25} {\left| {\sqrt {0,25 – {x^2}} – \left( { – \sqrt {0,25 – {x^2}} } \right)} \right|} dx \approx 1,896{m^3}\).

==================== Thuộc chủ đề: Trắc nghiệm Ứng dụng Tích phân

Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Bài liên quan:

  1. Đề toán 2022 Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau

    Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

  2. Đề toán 2022 [Mức độ 3] Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau:

    Chart

Description automatically generated

    Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

  3. Đề toán 2022 [Mức độ 3] Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln \left( {f\left( x \right)} \right)\) có bảng biến thiên như sau

    Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

  4. Đề toán 2022 [2D3-3.1-4] Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau:

    Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

  5. Đề toán 2022 Biết \(F\left( x \right)\) và \(G(x)\) là hai nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\) và\(\int\limits_0^4 {f\left( x \right)dx = F\left( 4 \right) – G\left( 0 \right) + a} ,\left( {a > 0} \right)\). Gọi \(S\)là diện tích hình phẳng giới hạn bởi các đường\(y = F\left( x \right);\,y = G\left( x \right);x = 0\) và \(x = 4.\)Khi \(S = 8\) thì \(a\) bằng\(\)

  6. Đề toán 2022 [2D3-3.1-3] Biết \(F\left( x \right)\) và \(G\left( x \right)\) là hai nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\)và \(\int\limits_0^5 {f\left( x \right)dx}  = F\left( 5 \right) – G\left( 0 \right) + a\) \(\left( {a > 0} \right)\). Gọi \(S\) là diện tích hình bẳng giới hạn bởi các đường \(y = F\left( x \right),y = G\left( x \right),x = 0\) và \(x = 5\). Khi \(S = 20\) thì \(a\) bằng

  7. Đề toán 2022 [Mức độ 3] Biết \(F\left( x \right)\) và \(G\left( x \right)\) là hai nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\) và \(\int\limits_0^3 {f\left( x \right)dx}  = F\left( 3 \right) – G\left( 0 \right) + a\) \(\left( {a > 0} \right)\). Gọi \(S\) là diện tích hình phẳng giới hạn bởi các đường \(y = F\left( x \right),\,y = G\left( x \right),x = 0\) và \(x = 3\). Khi \(S = 15\) thì \(a\) bằng?  

  8. Đề toán 2022 [ Mức độ 3] Biết \(F\left( x \right)\) và \(G\left( x \right)\) là hai nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\) và \(\int_0^2 {f\left( x \right)dx}  = F\left( 2 \right) – G\left( 0 \right) + a\)\(\left( {a > 0} \right)\). Gọi \(S\) là diện tích hình phẳng giới hạn bởi các đường \(y = F\left( x \right),\,y = G\left( x \right),\,x = 0\) và \(x = 2\). Khi \(S = 6\) thì \(a\) bằng

  9. Cho hàm số \(y = f\left( x \right) = \dfrac{1}{3}{x^3} – \left( {m + 1} \right){x^2} + \left( {m + 3} \right)x + m – 4\). Tìm để hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 điểm cực trị?
  10. Một tấm kim loại hình Elip có độ dài trục lớn bằng \(80cm\) và độ dài trục bé bằng \(60cm\). Hai đường Parabol \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) đi qua tâm và các đỉnh của hình chữ nhật cơ sở của Elip, đồng thời \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) đối xứng nhau qua trục lớn phân chia Elip thành hai phần (như hình vẽ). Phần tô màu người ta mạ Đồng, phần còn lại người ta mạ Bạ C. Giá mạ đồng là 100 ngàn đồng/\(d{m^2}\) và giá mạ bạc là 200 ngàn đồng/\(d{m^2}\). Hỏi số tiền để mạ tấm kim loại trên gần với số nào nhất trong các số sau?
  11. Trường ĐHBK Hà Nội có cổng là hình dáng của một parabol có khoảng cách 2 chân cổng là 10m, chiều cao cổng là 12,5m. Để chuẩn bị trang trí cổng chào mừng năm mới, nhà trường muốn làm cánh cửa cổng hình chữ nhật có 2 đỉnh nằm trên parabol còn 2 đỉnh dưới mặt đất như hình vẽ, phần diện tích không làm cánh cổng nhà trường dùng để trang trí hoa (tham khảo hình vẽ). Biết chi phí để trang trí \(1{m^2}\) hoa là 300.000 đồng. Nhà trường mua hoa với chi phí thấp nhất gần đúng với giá trị nào sau đây?
  12. Chuẩn bị cho lễ Halloween, bạn Nam đã làm một chiếc mũ “cách điệu” có hình dáng là một khối tròn xoay. Mặt cắt qua trục của chiếc mũ như hình vẽ sau đây. Biết rằng \(OO’ = 5cm,\;OA = 10cm,\;OB = 20cm\), đường cong \(AB\) là một phần của parabol có đỉnh là điểm \(A\). Thể tích của chiếc mũ bằng
  13. Người ta muốn trồng hoa trên một miếng đất hình tròn có bán kính bằng \(5\) m. Họ dự định sẽ để lại một phần (phần màu trắng như hình vẽ, trong đó \(AB = 6m\)) để làm việc khá C. Biết mỗi mét vuông trồng hoa cần chi phí 200 nghìn đồng. Hỏi cần bao nhiêu tiềnđể có thể thực hiện dự định này ?
  14. Một nhà máy nhiệt điện sử dụng 90 máng Parabol thu nhiệt năng lượng mặt trời có cùng kích thước, bề mặt cong đều nhau (tham khảo hình vẽ). Mỗi máng có chiều rộng \(2m\), bề dày của khối silic làm mặt máng là \(2dm\), chiều dài \(3m\). Đặt máng tiếp giáp mặt đất có điểm cao nhất của khối silic làm mặt máng so với mặt đất là \(5dm\). Khi đó thể tích (tính theo đơn vị \({m^3}\)) của khối silic làm \(90\) mặt máng là
  15. Người ta phân khu vườn hình chữ nhật \(ABCD\), \(AB = 10{\rm{m}}\), \(AD = 20{\rm{m}}\)thành năm khu vực bởi bốn parabol rồi trồng hoa ở khu vực trung tâm như hình vẽ kèm theo. Trong đó:➀ Hai parabol kề nhau tiếp xúc nhau tại một trong các điểm \(A,\,B,\,C,\,D\).➁ Khu vực trồng hoa là một hình có hai trục đối xứng.Với việc làm như đã nêu thì diện tích của khu vực trồng hoa có thể đạt giá trị lớn nhất là bao nhiêu?

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2022) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.