• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm ứng dụng tích phân thể tích vật thể tròn xoay

Đề bài: Thể tích khối tròn xoay do hình phẳng giới hạn bởi đồ thị hàm số \(y = \frac{{ – x}}{{x + 1}},\) trục \({\rm{Ox}}\) và đường thẳng x=1 khi quay quanh trục Ox là \(V = \pi (a + b\ln 2)\) với \(a,b \in \mathbb{Q}.\) Tính tích a.b.

Ngày 02/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân thể tích vật thể tròn xoay

Câu hỏi: Thể tích khối tròn xoay do hình phẳng giới hạn bởi đồ thị hàm số \(y = \frac{{ - x}}{{x + 1}},\) trục \({\rm{Ox}}\) và đường thẳng x=1 khi quay quanh trục Ox là \(V = \pi (a + b\ln 2)\) với \(a,b \in \mathbb{Q}.\) Tính tích a.b. A. \(a.b = 3.\) B.  \(a.b = \frac{{ - 4}}{3}.\) C. \(a.b = … [Đọc thêm...] vềĐề bài: Thể tích khối tròn xoay do hình phẳng giới hạn bởi đồ thị hàm số \(y = \frac{{ – x}}{{x + 1}},\) trục \({\rm{Ox}}\) và đường thẳng x=1 khi quay quanh trục Ox là \(V = \pi (a + b\ln 2)\) với \(a,b \in \mathbb{Q}.\) Tính tích a.b.

Đề bài: Tính thể tích V của khối tròn xoay khi cho đường cong có phương trình \({x^2} + {(y – 1)^2} = 1\) quay quanh trục hoành.

Ngày 02/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân thể tích vật thể tròn xoay

Câu hỏi: Tính thể tích V của khối tròn xoay khi cho đường cong có phương trình \({x^2} + {(y - 1)^2} = 1\) quay quanh trục hoành. A. \(V = 8{\pi ^2}\) B. \(V = 6{\pi ^2}\) C. \(V = 4{\pi ^2}\) D. \(V = 2{\pi ^2}\) Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. Có … [Đọc thêm...] vềĐề bài: Tính thể tích V của khối tròn xoay khi cho đường cong có phương trình \({x^2} + {(y – 1)^2} = 1\) quay quanh trục hoành.

Đề bài: Tính thể tích vật thể tròn xoay quanh trục Ox sinh bởi hình phẳng giới hạn bởi các đường \(y = 0,y = \sqrt {{\rm{co}}{{\rm{s}}^6}x + {{\sin }^6}x} ,x = 0,x = \frac{\pi }{2}\)

Ngày 02/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân thể tích vật thể tròn xoay

Câu hỏi: Tính thể tích vật thể tròn xoay quanh trục Ox sinh bởi hình phẳng giới hạn bởi các đường \(y = 0,y = \sqrt {{\rm{co}}{{\rm{s}}^6}x + {{\sin }^6}x} ,x = 0,x = \frac{\pi }{2}\) A. \( - \frac{{11{\pi ^2}}}{{16}}\) B. \(  \frac{{11{\pi ^2}}}{{16}}\) C. \(\frac{{{\pi ^2}}}{8}\) D. \(\frac{{{\pi … [Đọc thêm...] vềĐề bài: Tính thể tích vật thể tròn xoay quanh trục Ox sinh bởi hình phẳng giới hạn bởi các đường \(y = 0,y = \sqrt {{\rm{co}}{{\rm{s}}^6}x + {{\sin }^6}x} ,x = 0,x = \frac{\pi }{2}\)

Đề bài: Tính thể tích V của khối tròn xoay sinh ra bởi hình phẳng giới hạn bởi các đường \(y = \frac{4}{{x – 4}},y = 0,x = 0,x = 2\) quay một vòng quanh trục Ox là (theo đơn vị thể tích).

Ngày 02/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân thể tích vật thể tròn xoay

Câu hỏi: Tính thể tích V của khối tròn xoay sinh ra bởi hình phẳng giới hạn bởi các đường \(y = \frac{4}{{x - 4}},y = 0,x = 0,x = 2\) quay một vòng quanh trục Ox là (theo đơn vị thể tích). A. \(V = 2\pi\) (đvtt) B. \(V = 4\pi\) (đvtt) C. \(V = 6\pi\)(đvtt) D. \(V = 8\pi\)(đvtt) Hãy … [Đọc thêm...] vềĐề bài: Tính thể tích V của khối tròn xoay sinh ra bởi hình phẳng giới hạn bởi các đường \(y = \frac{4}{{x – 4}},y = 0,x = 0,x = 2\) quay một vòng quanh trục Ox là (theo đơn vị thể tích).

Đề bài: Tính thể tích V của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị các hàm số  và \(y = {x^2}\)  quanh trục hoành.

Ngày 01/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân thể tích vật thể tròn xoay

Câu hỏi: Tính thể tích V của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị các hàm số  và \(y = {x^2}\)  quanh trục hoành. A. \(V = \frac{{436}}{{35}}\pi\) B. \(V = \frac{{468}}{{35}}\pi\) C. \(V = \frac{{486}}{{35}}\pi\) D. \(V = \frac{{9\pi }}{2}\) Hãy chọn trả … [Đọc thêm...] vềĐề bài: Tính thể tích V của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị các hàm số  và \(y = {x^2}\)  quanh trục hoành.

Đề bài: Tính thể tích V của khối tròn xoay tạo thành khi quay quanh trục Ox hình phẳng được giới hạn bởi đồ thị hàm số \(y = (2 – x){e^{\frac{x}{2}}}\) và hai trục tọa độ.

Ngày 01/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân thể tích vật thể tròn xoay

Câu hỏi: Tính thể tích V của khối tròn xoay tạo thành khi quay quanh trục Ox hình phẳng được giới hạn bởi đồ thị hàm số \(y = (2 - x){e^{\frac{x}{2}}}\) và hai trục tọa độ. A. \(V = 2{e^2} - 10\) B. \(V = 2{e^2} + 10\) C. \(V = \pi (2{e^2} - 10)\) D. \(V = \pi \left( {2{e^2} + 10} \right)\) … [Đọc thêm...] vềĐề bài: Tính thể tích V của khối tròn xoay tạo thành khi quay quanh trục Ox hình phẳng được giới hạn bởi đồ thị hàm số \(y = (2 – x){e^{\frac{x}{2}}}\) và hai trục tọa độ.

Đề bài: Tính thể tích V của vật thể tròn xoay khi quay hình (H) quanh Ox với (H) được giới hạn bởi đồ thị hàm số \(y = \sqrt {4x – {x^2}}\) và trục hoành.

Ngày 01/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân thể tích vật thể tròn xoay

Câu hỏi: Tính thể tích V của vật thể tròn xoay khi quay hình (H) quanh Ox với (H) được giới hạn bởi đồ thị hàm số \(y = \sqrt {4x - {x^2}}\) và trục hoành. A. \(V = \frac{{35\pi }}{3}\) B. \(V = \frac{{31\pi }}{3}\) C. \(V = \frac{{32\pi }}{3}\) D. \(V = \frac{{34\pi }}{3}\) … [Đọc thêm...] vềĐề bài: Tính thể tích V của vật thể tròn xoay khi quay hình (H) quanh Ox với (H) được giới hạn bởi đồ thị hàm số \(y = \sqrt {4x – {x^2}}\) và trục hoành.

Đề bài: Cho hình phẳng (H) giới hạn bởi các đường \(y = 4 – {x^2},y = 0\). Tính thể tích V của khối tròn xoay hình thành khi cho (H) quay xung quanh Ox.

Ngày 01/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân thể tích vật thể tròn xoay

Câu hỏi: Cho hình phẳng (H) giới hạn bởi các đường \(y = 4 - {x^2},y = 0\). Tính thể tích V của khối tròn xoay hình thành khi cho (H) quay xung quanh Ox. A. \(V = \frac{{512}}{{15}}\left( {dvtt} \right)\)  B. \(V = \frac{{512\pi }}{{15}}\left( {dvtt} \right)\) C. \(V = 2\pi \left( {dvtt} \right)\) … [Đọc thêm...] vềĐề bài: Cho hình phẳng (H) giới hạn bởi các đường \(y = 4 – {x^2},y = 0\). Tính thể tích V của khối tròn xoay hình thành khi cho (H) quay xung quanh Ox.

Đề bài: Tính thể tích khối tròn xoay được tạo nên bởi phép quay xung quanh trục Ox của một hình phẳng giới hạn bởi các đường \(y = \frac{{x – 1}}{x},y = \frac{1}{x},x = 1.\)

Ngày 01/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân thể tích vật thể tròn xoay

Câu hỏi: Tính thể tích khối tròn xoay được tạo nên bởi phép quay xung quanh trục Ox của một hình phẳng giới hạn bởi các đường \(y = \frac{{x - 1}}{x},y = \frac{1}{x},x = 1.\) A. \(\pi \left( {2\ln 2 - 1} \right)\)  B. \(\pi \left( {1 - 2\ln 2} \right)\) C. 0 D. \( - \pi … [Đọc thêm...] vềĐề bài: Tính thể tích khối tròn xoay được tạo nên bởi phép quay xung quanh trục Ox của một hình phẳng giới hạn bởi các đường \(y = \frac{{x – 1}}{x},y = \frac{1}{x},x = 1.\)

Đề bài: Gọi V là thể tích vật tròn xoay khi quay hình phẳng giới hạn bởi đồ thị hàm số \(\sqrt {\frac{{\ln {\rm{x}}}}{{x{{\left( {\ln {\rm{x}} + 1} \right)}^2}}}} ,\) trục Ox, đường thẳng \(x = e\) quanh trục Ox. Biết \(V = \pi \left( {a\ln 2 + b} \right),\) với \(a,b \in \mathbb{Q}.\) Khẳng định nào sau đây là đúng?

Ngày 01/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân thể tích vật thể tròn xoay

Câu hỏi: Gọi V là thể tích vật tròn xoay khi quay hình phẳng giới hạn bởi đồ thị hàm số \(\sqrt {\frac{{\ln {\rm{x}}}}{{x{{\left( {\ln {\rm{x}} + 1} \right)}^2}}}} ,\) trục Ox, đường thẳng \(x = e\) quanh trục Ox. Biết \(V = \pi \left( {a\ln 2 + b} \right),\) với \(a,b \in \mathbb{Q}.\) Khẳng định nào sau đây là đúng? A. \(a - b = … [Đọc thêm...] vềĐề bài: Gọi V là thể tích vật tròn xoay khi quay hình phẳng giới hạn bởi đồ thị hàm số \(\sqrt {\frac{{\ln {\rm{x}}}}{{x{{\left( {\ln {\rm{x}} + 1} \right)}^2}}}} ,\) trục Ox, đường thẳng \(x = e\) quanh trục Ox. Biết \(V = \pi \left( {a\ln 2 + b} \right),\) với \(a,b \in \mathbb{Q}.\) Khẳng định nào sau đây là đúng?

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.