• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

tich phan nang cao

(Sở Thanh Hóa 2022) Cho hàm số \(f(x)\) có đạo hàm liên tục trên \(\mathbb{R}\) thoả män \(2f(x) + xf\prime (x) = 3x + 10,\forall x \in \mathbb{R}\) và \(f(1) = 6\). Biết

\(\int_{ – 1}^4 {\frac{{\ln (2 + \sqrt {f(x)} )}}{{{f^2}(x) – 6f(x) + 9}}} dx = a\ln 5 + b\ln 6 + \sqrt c \ln (2 + \sqrt 3 ),(a,b,c \in \mathbb{Q})\). Khi đó \(a + b + c\) thuộc khoàng nào dưới đây?

Ngày 14/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Sở Thanh Hóa 2022) Cho hàm số \(f(x)\) có đạo hàm liên tục trên \(\mathbb{R}\) thoả män \(2f(x) + xf\prime (x) = 3x + 10,\forall x \in \mathbb{R}\) và \(f(1) = 6\). Biết \(\int_{ - 1}^4 {\frac{{\ln (2 + \sqrt {f(x)} )}}{{{f^2}(x) - 6f(x) + 9}}} dx = a\ln 5 + b\ln 6 + \sqrt c \ln (2 + \sqrt 3 ),(a,b,c \in \mathbb{Q})\). Khi đó \(a + b + c\) thuộc khoàng nào … [Đọc thêm...] về

(Sở Thanh Hóa 2022) Cho hàm số \(f(x)\) có đạo hàm liên tục trên \(\mathbb{R}\) thoả män \(2f(x) + xf\prime (x) = 3x + 10,\forall x \in \mathbb{R}\) và \(f(1) = 6\). Biết

\(\int_{ – 1}^4 {\frac{{\ln (2 + \sqrt {f(x)} )}}{{{f^2}(x) – 6f(x) + 9}}} dx = a\ln 5 + b\ln 6 + \sqrt c \ln (2 + \sqrt 3 ),(a,b,c \in \mathbb{Q})\). Khi đó \(a + b + c\) thuộc khoàng nào dưới đây?

(THPT Yên Lạc – Vĩnh Phúc – 2022) Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\) thỏa mãn \(2x.f’\left( x \right) + f\left( x \right) = 3{x^2}\sqrt x ,\forall x \in \left( {0; + \infty } \right)\). Biết \(f\left( 1 \right) = \frac{1}{2}\), tính \(f\left( 4 \right)\).

Ngày 14/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Yên Lạc - Vĩnh Phúc - 2022) Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\) thỏa mãn \(2x.f'\left( x \right) + f\left( x \right) = 3{x^2}\sqrt x ,\forall x \in \left( {0; + \infty } \right)\). Biết \(f\left( 1 \right) = \frac{1}{2}\), tính \(f\left( 4 \right)\). A. \(14\). B. \(4\). C. \(24\). D. … [Đọc thêm...] về

(THPT Yên Lạc – Vĩnh Phúc – 2022) Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\) thỏa mãn \(2x.f’\left( x \right) + f\left( x \right) = 3{x^2}\sqrt x ,\forall x \in \left( {0; + \infty } \right)\). Biết \(f\left( 1 \right) = \frac{1}{2}\), tính \(f\left( 4 \right)\).

(THPT Lương Thế Vinh – Hà Nội – 2022) \(\int_0^4 {\min } \{ 2x + 1,x + 2, – 3x + 14\} dx{\rm{ }}\)bằng

Ngày 14/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Lương Thế Vinh – Hà Nội – 2022) \(\int_0^4 {\min } \{ 2x + 1,x + 2, - 3x + 14\} dx{\rm{ }}\)bằng A. \(\frac{{31}}{2}\). B. 30. C. \(\frac{{27}}{2}\). D. 36. Lời giải: Xét \(2x + 1 = x + 2 \Leftrightarrow x = 1;x + 2 = - 3x + 14 \Leftrightarrow x = 3; - 3x + 14 = 2x + 1 \Leftrightarrow x = \frac{{13}}{5}\). Vẽ đồ thị của ba hàm số … [Đọc thêm...] về

(THPT Lương Thế Vinh – Hà Nội – 2022) \(\int_0^4 {\min } \{ 2x + 1,x + 2, – 3x + 14\} dx{\rm{ }}\)bằng

(Sở Bạc Liêu 2022) Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}{e^x} + 1\,\,\,\,\,\,\,\,\,\,\,{\,^{}}\,{\mathop{\rm khi}\nolimits} \,x \ge 0\\{x^2} – 2x + 2{\,^{}}{\mathop{\rm khi}\nolimits} \,x < 0\end{array} \right.\). Tích phân \(I = \int\limits_{\frac{1}{e}}^{{e^2}} {\frac{{f\left( {\ln x – 1} \right)}}{x}{\rm{d}}x} = \frac{a}{b} + ce\) biết \(a,b,c \in \mathbb{Z}\) và \(\frac{a}{b}\) tối giản. Tính \(a + b + c?\)

Ngày 14/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Sở Bạc Liêu 2022) Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}{e^x} + 1\,\,\,\,\,\,\,\,\,\,\,{\,^{}}\,{\mathop{\rm khi}\nolimits} \,x \ge 0\\{x^2} - 2x + 2{\,^{}}{\mathop{\rm khi}\nolimits} \,x < 0\end{array} \right.\). Tích phân \(I = \int\limits_{\frac{1}{e}}^{{e^2}} {\frac{{f\left( {\ln x - 1} \right)}}{x}{\rm{d}}x} = \frac{a}{b} + ce\) … [Đọc thêm...] về

(Sở Bạc Liêu 2022) Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}{e^x} + 1\,\,\,\,\,\,\,\,\,\,\,{\,^{}}\,{\mathop{\rm khi}\nolimits} \,x \ge 0\\{x^2} – 2x + 2{\,^{}}{\mathop{\rm khi}\nolimits} \,x < 0\end{array} \right.\). Tích phân \(I = \int\limits_{\frac{1}{e}}^{{e^2}} {\frac{{f\left( {\ln x – 1} \right)}}{x}{\rm{d}}x} = \frac{a}{b} + ce\) biết \(a,b,c \in \mathbb{Z}\) và \(\frac{a}{b}\) tối giản. Tính \(a + b + c?\)

(THPT Hương Sơn – Hà Tĩnh – 2022) Một biển quảng cáo có dạng hình tròn tâm \(O\), phía trong được trang trí bởi hình chữ nhật \(ABCD\); hình vuông \(MNPQ\) có cạnh \(MN = 2m\) và hai đường parabol đối xứng nhau chung đỉnh \(O\) như hình vẽ. Biết chi phí để sơn phần tô đậm là 300.000 đồng/m2 và phần còn lại là 250.000 đồng/m2. Hỏi số tiền để sơn theo cách trên gần nhất với số tiền nào dưới đây?

Ngày 14/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Hương Sơn - Hà Tĩnh - 2022) Một biển quảng cáo có dạng hình tròn tâm \(O\), phía trong được trang trí bởi hình chữ nhật \(ABCD\); hình vuông \(MNPQ\) có cạnh \(MN = 2m\) và hai đường parabol đối xứng nhau chung đỉnh \(O\) như hình vẽ. Biết chi phí để sơn phần tô đậm là 300.000 đồng/m2 và phần còn lại là 250.000 đồng/m2. Hỏi số tiền để sơn theo cách trên gần … [Đọc thêm...] về(THPT Hương Sơn – Hà Tĩnh – 2022) Một biển quảng cáo có dạng hình tròn tâm \(O\), phía trong được trang trí bởi hình chữ nhật \(ABCD\); hình vuông \(MNPQ\) có cạnh \(MN = 2m\) và hai đường parabol đối xứng nhau chung đỉnh \(O\) như hình vẽ. Biết chi phí để sơn phần tô đậm là 300.000 đồng/m2 và phần còn lại là 250.000 đồng/m2. Hỏi số tiền để sơn theo cách trên gần nhất với số tiền nào dưới đây?

(Sở Hà Tĩnh 2022) Cho \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right) = {\sin ^2}x\) trên \(\mathbb{R}\) thoả mãn \(F\left( {\frac{\pi }{4}} \right) = 0\). Giá trị biểu thức \(S = F\left( { – \pi } \right) + 2F\left( {\frac{\pi }{2}} \right)\) bằng

Ngày 14/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Sở Hà Tĩnh 2022) Cho \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right) = {\sin ^2}x\) trên \(\mathbb{R}\) thoả mãn \(F\left( {\frac{\pi }{4}} \right) = 0\). Giá trị biểu thức \(S = F\left( { - \pi } \right) + 2F\left( {\frac{\pi }{2}} \right)\) bằng A. \(S = \frac{3}{4} - \frac{\pi }{4}\). B. \(S = \frac{3}{4} - \frac{{3\pi }}{4}\). C. \(S = … [Đọc thêm...] về

(Sở Hà Tĩnh 2022) Cho \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right) = {\sin ^2}x\) trên \(\mathbb{R}\) thoả mãn \(F\left( {\frac{\pi }{4}} \right) = 0\). Giá trị biểu thức \(S = F\left( { – \pi } \right) + 2F\left( {\frac{\pi }{2}} \right)\) bằng

(Chuyên Lam Sơn 2022) Cho hàm số \(y = f(x)\) có đạo hàm liên tục trên \((0;\pi )\) thỏa mãn \(f\prime (x) = f(x)\). \(\cot x + 2x\). \(\sin x\). Biết \(f\left( {\frac{\pi }{2}} \right) = \frac{{{\pi ^2}}}{4}\). Tính \(f\left( {\frac{\pi }{6}} \right)\).

Ngày 14/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Chuyên Lam Sơn 2022) Cho hàm số \(y = f(x)\) có đạo hàm liên tục trên \((0;\pi )\) thỏa mãn \(f\prime (x) = f(x)\). \(\cot x + 2x\). \(\sin x\). Biết \(f\left( {\frac{\pi }{2}} \right) = \frac{{{\pi ^2}}}{4}\). Tính \(f\left( {\frac{\pi }{6}} \right)\). A. \(\frac{{{\pi ^2}}}{{36}}\). B. \(\frac{{{\pi ^2}}}{{72}}\). C. \(\frac{{{\pi … [Đọc thêm...] về

(Chuyên Lam Sơn 2022) Cho hàm số \(y = f(x)\) có đạo hàm liên tục trên \((0;\pi )\) thỏa mãn \(f\prime (x) = f(x)\). \(\cot x + 2x\). \(\sin x\). Biết \(f\left( {\frac{\pi }{2}} \right) = \frac{{{\pi ^2}}}{4}\). Tính \(f\left( {\frac{\pi }{6}} \right)\).

(Chuyên Nguyễn Trãi – Hải Dương – 2022) Cho hàm số \(y = f(x)\) có đồ thị \((C),f(x)\) có đạo hàm xác định và liên tục trên khoảng \((0; + \infty )\) thỏa mãn điều kiện \(f\prime (x) = \ln x \cdot {f^2}(x),\forall x \in (0; + \infty )\). Biết \(f(x) \ne 0,\forall x \in (0; + \infty )\) và \(f(e) = 2\). Viết phương trình tiếp tuyến với đồ thị \((C)\) tại điểm có hoành độ \(x = 1\).

Ngày 14/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Chuyên Nguyễn Trãi – Hải Dương – 2022) Cho hàm số \(y = f(x)\) có đồ thị \((C),f(x)\) có đạo hàm xác định và liên tục trên khoảng \((0; + \infty )\) thỏa mãn điều kiện \(f\prime (x) = \ln x \cdot {f^2}(x),\forall x \in (0; + \infty )\). Biết \(f(x) \ne 0,\forall x \in (0; + \infty )\) và \(f(e) = 2\). Viết phương trình tiếp tuyến với đồ thị \((C)\) tại điểm có … [Đọc thêm...] về

(Chuyên Nguyễn Trãi – Hải Dương – 2022) Cho hàm số \(y = f(x)\) có đồ thị \((C),f(x)\) có đạo hàm xác định và liên tục trên khoảng \((0; + \infty )\) thỏa mãn điều kiện \(f\prime (x) = \ln x \cdot {f^2}(x),\forall x \in (0; + \infty )\). Biết \(f(x) \ne 0,\forall x \in (0; + \infty )\) và \(f(e) = 2\). Viết phương trình tiếp tuyến với đồ thị \((C)\) tại điểm có hoành độ \(x = 1\).

(Chuyên Lê Quý Đôn – Điện Biên – 2022) Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d,\,\,\left( {a,b,c,d \in \mathbb{R},\,\,a \ne 0} \right)\) có đồ thị \(\left( C \right)\). Biết rằng đồ thị \(\left( C \right)\) tiếp xúc với đường thẳng \(y = 4\) tại điểm có hoành độ âm và đồ thị của hàm số \(y = f’\left( x \right)\) cho bởi hình vẽ dưới đây. Tính thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng \(H\) giới hạn bởi đồ thị \(\left( C \right)\) và trục hoành khi quay xung quanh trục \(Ox\).

Ngày 14/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Chuyên Lê Quý Đôn - Điện Biên - 2022) Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d,\,\,\left( {a,b,c,d \in \mathbb{R},\,\,a \ne 0} \right)\) có đồ thị \(\left( C \right)\). Biết rằng đồ thị \(\left( C \right)\) tiếp xúc với đường thẳng \(y = 4\) tại điểm có hoành độ âm và đồ thị của hàm số \(y = f'\left( x \right)\) cho bởi hình vẽ dưới đây. Tính … [Đọc thêm...] về(Chuyên Lê Quý Đôn – Điện Biên – 2022) Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d,\,\,\left( {a,b,c,d \in \mathbb{R},\,\,a \ne 0} \right)\) có đồ thị \(\left( C \right)\). Biết rằng đồ thị \(\left( C \right)\) tiếp xúc với đường thẳng \(y = 4\) tại điểm có hoành độ âm và đồ thị của hàm số \(y = f’\left( x \right)\) cho bởi hình vẽ dưới đây. Tính thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng \(H\) giới hạn bởi đồ thị \(\left( C \right)\) và trục hoành khi quay xung quanh trục \(Ox\).

(Sở Bắc Giang 2022) Cho hàm số \(y = f(x)\) có đạo hàm xác định trên \((0; + \infty )\) và thỏa mãn \(x\left( {f\prime (x) + x} \right) = (x + 1)f(x);f(1) = e + 1\). Biết rằng \(\int_0^1 f (x)dx = \frac{a}{b};\) trong đó \(a,b\) là những số nguyên dương và phân số \(\frac{a}{b}\) tối giản. Khi đó giá trị của \((2a + b)\) tương ứng bằng:

Ngày 14/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Sở Bắc Giang 2022) Cho hàm số \(y = f(x)\) có đạo hàm xác định trên \((0; + \infty )\) và thỏa mãn \(x\left( {f\prime (x) + x} \right) = (x + 1)f(x);f(1) = e + 1\). Biết rằng \(\int_0^1 f (x)dx = \frac{a}{b};\) trong đó \(a,b\) là những số nguyên dương và phân số \(\frac{a}{b}\) tối giản. Khi đó giá trị của \((2a + b)\) tương ứng bằng: A. 4. B. 5. C. … [Đọc thêm...] về

(Sở Bắc Giang 2022) Cho hàm số \(y = f(x)\) có đạo hàm xác định trên \((0; + \infty )\) và thỏa mãn \(x\left( {f\prime (x) + x} \right) = (x + 1)f(x);f(1) = e + 1\). Biết rằng \(\int_0^1 f (x)dx = \frac{a}{b};\) trong đó \(a,b\) là những số nguyên dương và phân số \(\frac{a}{b}\) tối giản. Khi đó giá trị của \((2a + b)\) tương ứng bằng:

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Interim pages omitted …
  • Trang 8
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.