• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Ứng dụng Tích phân / (Sở Bắc Giang 2022) Một bức tường lớn kích thước \(8m \times 8m\) trước đại sảnh của một toà biệt thự được sơn loại sơn đặc biệt. Người ta vẽ hai nửa đường tròn đường kính \(AD,AB\) cắt nhau tại \(H\); đường tròn tâm \(D\), bán kính \(AD\), cắt nửa đường tròn đường kính \(AB\) tại \(K\). Biết tam giác “cong” \(AHK\) được sơn màu xanh và các phần còn lại được sơn màu trắng (như hình vẽ) và một mét vuông sơn trắng, sơn xanh lần lượt có giá là 1 triệu đồng và 1,5 triệu đồng. Tính số tiền phải trả (làm tròn đến hàng ngàn).

(Sở Bắc Giang 2022) Một bức tường lớn kích thước \(8m \times 8m\) trước đại sảnh của một toà biệt thự được sơn loại sơn đặc biệt. Người ta vẽ hai nửa đường tròn đường kính \(AD,AB\) cắt nhau tại \(H\); đường tròn tâm \(D\), bán kính \(AD\), cắt nửa đường tròn đường kính \(AB\) tại \(K\). Biết tam giác “cong” \(AHK\) được sơn màu xanh và các phần còn lại được sơn màu trắng (như hình vẽ) và một mét vuông sơn trắng, sơn xanh lần lượt có giá là 1 triệu đồng và 1,5 triệu đồng. Tính số tiền phải trả (làm tròn đến hàng ngàn).

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi:

(Sở Bắc Giang 2022) Một bức tường lớn kích thước \(8m \times 8m\) trước đại sảnh của một toà biệt thự được sơn loại sơn đặc biệt. Người ta vẽ hai nửa đường tròn đường kính \(AD,AB\) cắt nhau tại \(H\); đường tròn tâm \(D\), bán kính \(AD\), cắt nửa đường tròn đường kính \(AB\) tại \(K\). Biết tam giác “cong” \(AHK\) được sơn màu xanh và các phần còn lại được sơn màu trắng (như hình vẽ) và một mét vuông sơn trắng, sơn xanh lần lượt có giá là 1 triệu đồng và 1,5 triệu đồng. Tính số tiền phải trả (làm tròn đến hàng ngàn).

<p> (Sở Bắc Giang 2022) Một bức tường lớn kích thước (8m times 8m) trước đại sảnh của một toà biệt thự được sơn loại sơn đặc biệt. Người ta vẽ hai nửa đường tròn đường kính (AD,AB) cắt nhau tại (H); đường tròn tâm (D), bán kính (AD), cắt nửa đường tròn đường kính (AB) tại (K). Biết tam giác "cong" (AHK) được sơn màu xanh và các phần còn lại được sơn màu trắng (như hình vẽ) và một mét vuông sơn trắng, sơn xanh lần lượt có giá là 1 triệu đồng và 1,5 triệu đồng. Tính số tiền phải trả (làm tròn đến hàng ngàn).</p> <!-- wp:image -->
<figure class="wp-block-image"><img src="https://lh4.googleusercontent.com/1EOPxcSLSRXcXvjOXmLAkwTg36J8uIer2Zj1uvwnSeupN9wFj7ejKVEBkZEs2EvqmcYrHRSb3sjiqEB4snBx7onMrCzIUthwkKjxi_gfWEmaVOhyGZU79LG2NgR2kaA4Rvc0krzSh-FvTZBJwQ" alt=""/></figure>
<!-- /wp:image --> 1

A. \(60,567,000\) (đồng).

B. \(70,405,000\) (đồng).

C. \(67,128,000\) (đồng).

D. \(86,124,000\) (đồng).

Lời giải:

Chọn hệ toạ độ \(Oxy\) như hình vẽ sau

<p> (Sở Bắc Giang 2022) Một bức tường lớn kích thước (8m times 8m) trước đại sảnh của một toà biệt thự được sơn loại sơn đặc biệt. Người ta vẽ hai nửa đường tròn đường kính (AD,AB) cắt nhau tại (H); đường tròn tâm (D), bán kính (AD), cắt nửa đường tròn đường kính (AB) tại (K). Biết tam giác "cong" (AHK) được sơn màu xanh và các phần còn lại được sơn màu trắng (như hình vẽ) và một mét vuông sơn trắng, sơn xanh lần lượt có giá là 1 triệu đồng và 1,5 triệu đồng. Tính số tiền phải trả (làm tròn đến hàng ngàn).</p> <!-- wp:image -->
<figure class="wp-block-image"><img src="https://lh4.googleusercontent.com/1EOPxcSLSRXcXvjOXmLAkwTg36J8uIer2Zj1uvwnSeupN9wFj7ejKVEBkZEs2EvqmcYrHRSb3sjiqEB4snBx7onMrCzIUthwkKjxi_gfWEmaVOhyGZU79LG2NgR2kaA4Rvc0krzSh-FvTZBJwQ" alt=""/></figure>
<!-- /wp:image --> 2

Dễ thấy cung \(AB\) có phương trình \(y = f(x) = 8 – \sqrt {16 – {{(x – 4)}^2}} \); cung \(AH\) có phương trình \(y = g(x) = 4 + \sqrt {16 – {x^2}} \) và cung \(AC\) có phương trình \(y = h(x) = \sqrt {64 – {x^2}} \). Dễ tìm được tọa độ các điểm \(H(4;4)\) và \(K\left( {6,4;\frac{{24}}{5}} \right)\).

Diện tích tam giác \(AHK\) là

\(S = {S_{AHE}} + {S_{HEX}} = \int_0^4 {\left( {\sqrt {64 – {x^2}} – 4 – \sqrt {16 – {x^2}} } \right)} dx + \int_4^{6.4} {\left( {\sqrt {64 – {x^2}} – 8 + \sqrt {16 – {{(x – 4)}^2}} } \right)} dx \approx 6,255085231.\)\(\)

Số tiền cần trả là \(S \cdot 1,5 + \left( {{8^2} – S} \right) \cdot 1 = 67,12754262\).

Vậy số tiền cần trả là \(67,128,000\) (đồng).

==================== Thuộc chủ đề: Trắc nghiệm Ứng dụng Tích phân

Bài liên quan:

  1. Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $f(x)=3 f(2 x)$. Gọi $F(x)$ là nguyên hàm của $f(x)$ trên $\mathbb{R}$ thỏa mãn $F(4)=3$ và $F(2)+4 F(8)=0$. Khi đó $\int_{0}^{2} f(3 x+2) \mathrm{d} x$ bằng
  2. Cho hàm số $f(x)$ có nguyên hàm $F(x)$ và thỏa mãn $x f^{\prime}(x)=f(x)-x f^{2}(x)$ với mọi $x \in(0 ;+\infty)$. Biết $f(1)=1$ và $F(1)=\ln 2$. Tính $F(2)$.
  3. Cho hàm số \(y = f(x)\) có đạo hàm liên tục trên \(\mathbb{R}\) và thỏa mãn \(f(x) + xf'(x) = 4{x^3} + 4x + 2,\forall x \in \mathbb{R}\) . Diện tích hình phẳng giới hạn bởi các đường \(y = f(x)\) và \(y = {f^\prime }(x)\) bằng
  4. Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\). Gọi \(F\left( x \right),G\left( x \right)\) là hai nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\) thỏa mãn \(F\left( 4 \right) + G\left( 4 \right) = 4\) và \(F\left( 0 \right) + G\left( 0 \right) = 1\). Khi đó \(\int\limits_0^2 f \left( {2x} \right){\rm{d}}x\) bằng
  5. Đề toán 2022 Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau

    Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

  6. Đề toán 2022 [Mức độ 3] Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau:

    Chart
Description automatically generated

    Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

  7. Đề toán 2022 [Mức độ 3] Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln \left( {f\left( x \right)} \right)\) có bảng biến thiên như sau

    Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

  8. Đề toán 2022 [2D3-3.1-4] Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau:

    Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

  9. Đề toán 2022 Biết \(F\left( x \right)\) và \(G(x)\) là hai nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\) và\(\int\limits_0^4 {f\left( x \right)dx = F\left( 4 \right) – G\left( 0 \right) + a} ,\left( {a > 0} \right)\). Gọi \(S\)là diện tích hình phẳng giới hạn bởi các đường\(y = F\left( x \right);\,y = G\left( x \right);x = 0\) và \(x = 4.\)Khi \(S = 8\) thì \(a\) bằng\(\)

  10. Đề toán 2022 [2D3-3.1-3] Biết \(F\left( x \right)\) và \(G\left( x \right)\) là hai nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\)và \(\int\limits_0^5 {f\left( x \right)dx}  = F\left( 5 \right) – G\left( 0 \right) + a\) \(\left( {a > 0} \right)\). Gọi \(S\) là diện tích hình bẳng giới hạn bởi các đường \(y = F\left( x \right),y = G\left( x \right),x = 0\) và \(x = 5\). Khi \(S = 20\) thì \(a\) bằng

  11. Đề toán 2022 [Mức độ 3] Biết \(F\left( x \right)\) và \(G\left( x \right)\) là hai nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\) và \(\int\limits_0^3 {f\left( x \right)dx}  = F\left( 3 \right) – G\left( 0 \right) + a\) \(\left( {a > 0} \right)\). Gọi \(S\) là diện tích hình phẳng giới hạn bởi các đường \(y = F\left( x \right),\,y = G\left( x \right),x = 0\) và \(x = 3\). Khi \(S = 15\) thì \(a\) bằng?  

  12. Đề toán 2022 [ Mức độ 3] Biết \(F\left( x \right)\) và \(G\left( x \right)\) là hai nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\) và \(\int_0^2 {f\left( x \right)dx}  = F\left( 2 \right) – G\left( 0 \right) + a\)\(\left( {a > 0} \right)\). Gọi \(S\) là diện tích hình phẳng giới hạn bởi các đường \(y = F\left( x \right),\,y = G\left( x \right),\,x = 0\) và \(x = 2\). Khi \(S = 6\) thì \(a\) bằng

  13. Cho hàm số \(y = f\left( x \right) = \dfrac{1}{3}{x^3} – \left( {m + 1} \right){x^2} + \left( {m + 3} \right)x + m – 4\). Tìm để hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 điểm cực trị?
  14. Một tấm kim loại hình Elip có độ dài trục lớn bằng \(80cm\) và độ dài trục bé bằng \(60cm\). Hai đường Parabol \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) đi qua tâm và các đỉnh của hình chữ nhật cơ sở của Elip, đồng thời \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) đối xứng nhau qua trục lớn phân chia Elip thành hai phần (như hình vẽ). Phần tô màu người ta mạ Đồng, phần còn lại người ta mạ Bạ C. Giá mạ đồng là 100 ngàn đồng/\(d{m^2}\) và giá mạ bạc là 200 ngàn đồng/\(d{m^2}\). Hỏi số tiền để mạ tấm kim loại trên gần với số nào nhất trong các số sau?
  15. Trường ĐHBK Hà Nội có cổng là hình dáng của một parabol có khoảng cách 2 chân cổng là 10m, chiều cao cổng là 12,5m. Để chuẩn bị trang trí cổng chào mừng năm mới, nhà trường muốn làm cánh cửa cổng hình chữ nhật có 2 đỉnh nằm trên parabol còn 2 đỉnh dưới mặt đất như hình vẽ, phần diện tích không làm cánh cổng nhà trường dùng để trang trí hoa (tham khảo hình vẽ). Biết chi phí để trang trí \(1{m^2}\) hoa là 300.000 đồng. Nhà trường mua hoa với chi phí thấp nhất gần đúng với giá trị nào sau đây?

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.