Câu hỏi: Một người chọn ngẫu nhiên hai chiếc giày từ bốn đôi giày cỡ khác nhau. Xác suất để hai chiếc chọn được tạo thành một đôi là: A. \( \frac{4}{7}.\) B. \( \frac{3}{14}.\) C. \( \frac{1}{7}.\) D. \( \frac{5}{28}.\) Lời Giải: Đây là các bài toán về Hoán vị, Chỉnh hợp, Tổ hợp có áp dụng các phép đếm. Gọi A là biến cố: “hai chiếc chọn được tạo thành một … [Đọc thêm...] vềMột người chọn ngẫu nhiên hai chiếc giày từ bốn đôi giày cỡ khác nhau. Xác suất để hai chiếc chọn được tạo thành một đôi là:
Kết quả tìm kiếm cho: ty+so
Gieo đồng xu hai lần liên tiếp. Xác suất để sau hai lần gieo thì mặt ngửa xuất hiện ít nhất một lần.
Câu hỏi: Gieo đồng xu hai lần liên tiếp. Xác suất để sau hai lần gieo thì mặt ngửa xuất hiện ít nhất một lần. A. \( \frac{1}{4}\) B. \( \frac{1}{2}\) C. \( \frac{3}{4}\) D. \( \frac{1}{3}\) Lời Giải: Đây là các bài toán về Hoán vị, Chỉnh hợp, Tổ hợp có áp dụng các phép đếm. Số phần tử của không gian mẫu \( n\left( {\rm{\Omega }} \right) = 2.2 = 4\) Biến cố … [Đọc thêm...] vềGieo đồng xu hai lần liên tiếp. Xác suất để sau hai lần gieo thì mặt ngửa xuất hiện ít nhất một lần.
Một nhóm gồm 8 nam và 7 nữ. Chọn ngẫu nhiên 5 bạn. Xác suất để trong 5 bạn được chọn có cả nam lẫn nữ mà nam nhiều hơn nữ là:
Câu hỏi: Một nhóm gồm 8 nam và 7 nữ. Chọn ngẫu nhiên 5 bạn. Xác suất để trong 5 bạn được chọn có cả nam lẫn nữ mà nam nhiều hơn nữ là: A. \( \frac{{60}}{{143}}\) B. \( \frac{{238}}{{429}}\) C. \( \frac{{210}}{{429}}\) D. \( \frac{{82}}{{143}}\) Lời Giải: Đây là các bài toán về Hoán vị, Chỉnh hợp, Tổ hợp có áp dụng các phép đếm. Gọi A là biến cố: “5 bạn được … [Đọc thêm...] vềMột nhóm gồm 8 nam và 7 nữ. Chọn ngẫu nhiên 5 bạn. Xác suất để trong 5 bạn được chọn có cả nam lẫn nữ mà nam nhiều hơn nữ là:
Một con thỏ di chuyển từ địa điểm A đến địa điểm B bằng cách qua các điểm nút (trong lưới cho ở hình vẽ) thì chỉ di chuyển sang phải hoặc đi lên (mỗi cách di chuyển như vậy xem là một cách đi). Biết nếu thỏ di chuyển đến nút C thì bị cáo ăn thịt, tính xác suất để thỏ đến được vị trí B.
Câu hỏi: Một con thỏ di chuyển từ địa điểm A đến địa điểm B bằng cách qua các điểm nút (trong lưới cho ở hình vẽ) thì chỉ di chuyển sang phải hoặc đi lên (mỗi cách di chuyển như vậy xem là một cách đi). Biết nếu thỏ di chuyển đến nút C thì bị cáo ăn thịt, tính xác suất để thỏ đến được vị trí B. A. \( \frac{1}{2}\) B. \( \frac{2}{3}\) C. \( \frac{3}{4}\) D. \( … [Đọc thêm...] vềMột con thỏ di chuyển từ địa điểm A đến địa điểm B bằng cách qua các điểm nút (trong lưới cho ở hình vẽ) thì chỉ di chuyển sang phải hoặc đi lên (mỗi cách di chuyển như vậy xem là một cách đi). Biết nếu thỏ di chuyển đến nút C thì bị cáo ăn thịt, tính xác suất để thỏ đến được vị trí B.
Mỗi lượt, ta gieo một con súc sắc (loại 6 mặt, cân đối) và một đồng xu (cân đối). Tính xác suất để trong 3 lượt gieo như vậy, có ít nhất một lượt gieo được kết quả con súc sắc xuất hiện mặt 1 chấm, đồng thời đồng xu xuất hiện mặt sấp.
Câu hỏi: Mỗi lượt, ta gieo một con súc sắc (loại 6 mặt, cân đối) và một đồng xu (cân đối). Tính xác suất để trong 3 lượt gieo như vậy, có ít nhất một lượt gieo được kết quả con súc sắc xuất hiện mặt 1 chấm, đồng thời đồng xu xuất hiện mặt sấp. A. \( \frac{{397}}{{1728}}\) B. \( \frac{{1325}}{{1728}}\) C. \( \frac{{1331}}{{1728}}\) D. \( \frac{{1603}}{{1728}}\) … [Đọc thêm...] vềMỗi lượt, ta gieo một con súc sắc (loại 6 mặt, cân đối) và một đồng xu (cân đối). Tính xác suất để trong 3 lượt gieo như vậy, có ít nhất một lượt gieo được kết quả con súc sắc xuất hiện mặt 1 chấm, đồng thời đồng xu xuất hiện mặt sấp.
An và Bình cùng tham gia kì thi THPTQG năm 2018 , ngoài thi ba môn Toán, Văn, Tiếng Anh bắt buộc thì An và Bình đều đăng kí thi thêm đúng hai môn tự chọn khác trong ba môn Vật lí, Hóa học và Sinh học dưới hình thức thi trắc nghiệm để xét tuyển Đại học. Mỗi môn tự chọn trắc nghiệm có 8 mã đề thi khác nhau, mã đề thi của các môn khác nhau là khác nhau. Tính xác suất để An và Bình có chung đúng một môn thi tự chọn và chung một mã đề.
Câu hỏi: An và Bình cùng tham gia kì thi THPTQG năm 2018 , ngoài thi ba môn Toán, Văn, Tiếng Anh bắt buộc thì An và Bình đều đăng kí thi thêm đúng hai môn tự chọn khác trong ba môn Vật lí, Hóa học và Sinh học dưới hình thức thi trắc nghiệm để xét tuyển Đại học. Mỗi môn tự chọn trắc nghiệm có 8 mã đề thi khác nhau, mã đề thi của các môn khác nhau là khác nhau. Tính xác suất … [Đọc thêm...] vềAn và Bình cùng tham gia kì thi THPTQG năm 2018 , ngoài thi ba môn Toán, Văn, Tiếng Anh bắt buộc thì An và Bình đều đăng kí thi thêm đúng hai môn tự chọn khác trong ba môn Vật lí, Hóa học và Sinh học dưới hình thức thi trắc nghiệm để xét tuyển Đại học. Mỗi môn tự chọn trắc nghiệm có 8 mã đề thi khác nhau, mã đề thi của các môn khác nhau là khác nhau. Tính xác suất để An và Bình có chung đúng một môn thi tự chọn và chung một mã đề.
Có 12 người xếp thành một hàng dọc (vị trí của mỗi người trong hàng là cố định), Chọn ngẫu nhiên 3 người trong hàng. Tính xác suất để 3 người được chọn không có 2 người đứng nào cạnh nhau
Câu hỏi: Có 12 người xếp thành một hàng dọc (vị trí của mỗi người trong hàng là cố định), Chọn ngẫu nhiên 3 người trong hàng. Tính xác suất để 3 người được chọn không có 2 người đứng nào cạnh nhau A. \( \frac{{21}}{{55}}\) B. \( \frac{{6}}{{11}}\) C. \( \frac{{55}}{{126}}\) D. \( \frac{{7}}{{110}}\) Lời Giải: Đây là các bài toán về Hoán vị, Chỉnh hợp, Tổ hợp … [Đọc thêm...] vềCó 12 người xếp thành một hàng dọc (vị trí của mỗi người trong hàng là cố định), Chọn ngẫu nhiên 3 người trong hàng. Tính xác suất để 3 người được chọn không có 2 người đứng nào cạnh nhau
Biết rằng trong bóng đá, khi sút phạt, cầu thủ sút phạt ngẫu nhiên vào 1 trong bốn vị trí 1, 2, 3, 4 và thủ môn bay người cản phá ngẫu nhiên đến 1 trong 4 vị trí 1, 2, 3, 4 với xác suất như nhau (thủ môn và cầu thủ sút phạt đều không đoán được ý định của đối phương). Biết nếu cầu thủ sút và thủ môn bay cùng vào vị trí 1 (hoặc 2) thì thủ môn cản phá được cú sút đó, nếu cùng vào vị trí 3 (hoặc 4) thì xác suất cản phá thành công là 50% . Tính xác suất của biến cố “cú sút đó không vào lưới”?
Câu hỏi: Biết rằng trong bóng đá, khi sút phạt, cầu thủ sút phạt ngẫu nhiên vào 1 trong bốn vị trí 1, 2, 3, 4 và thủ môn bay người cản phá ngẫu nhiên đến 1 trong 4 vị trí 1, 2, 3, 4 với xác suất như nhau (thủ môn và cầu thủ sút phạt đều không đoán được ý định của đối phương). Biết nếu cầu thủ sút và thủ môn bay cùng vào vị trí 1 (hoặc 2) thì thủ môn cản phá được cú sút đó, … [Đọc thêm...] vềBiết rằng trong bóng đá, khi sút phạt, cầu thủ sút phạt ngẫu nhiên vào 1 trong bốn vị trí 1, 2, 3, 4 và thủ môn bay người cản phá ngẫu nhiên đến 1 trong 4 vị trí 1, 2, 3, 4 với xác suất như nhau (thủ môn và cầu thủ sút phạt đều không đoán được ý định của đối phương). Biết nếu cầu thủ sút và thủ môn bay cùng vào vị trí 1 (hoặc 2) thì thủ môn cản phá được cú sút đó, nếu cùng vào vị trí 3 (hoặc 4) thì xác suất cản phá thành công là 50% . Tính xác suất của biến cố “cú sút đó không vào lưới”?
Có 8 chiếc ghế được kê thành một hàng ngang. Xếp ngẫu nhiên 8 học sinh, gồm 3 học sinh lớp A, 3 học sinh lớp B và 2 học sinh lớp C, ngồi vào ghế đó, sao cho mỗi ghế có đúng một học sinh. Xác suất để có đúng 2 học sinh lớp A ngồi cạnh nhau bằng \(\frac{a}{b}\) với \(a,b\in \mathbb{N},\,\left( a;b \right)=1\). Khi đó giá trị a+b là
Câu hỏi: Có 8 chiếc ghế được kê thành một hàng ngang. Xếp ngẫu nhiên 8 học sinh, gồm 3 học sinh lớp A, 3 học sinh lớp B và 2 học sinh lớp C, ngồi vào ghế đó, sao cho mỗi ghế có đúng một học sinh. Xác suất để có đúng 2 học sinh lớp A ngồi cạnh nhau bằng \(\frac{a}{b}\) với \(a,b\in \mathbb{N},\,\left( a;b \right)=1\). Khi đó giá trị a+b là A. 43 B. 93 C. 101 D. … [Đọc thêm...] vềCó 8 chiếc ghế được kê thành một hàng ngang. Xếp ngẫu nhiên 8 học sinh, gồm 3 học sinh lớp A, 3 học sinh lớp B và 2 học sinh lớp C, ngồi vào ghế đó, sao cho mỗi ghế có đúng một học sinh. Xác suất để có đúng 2 học sinh lớp A ngồi cạnh nhau bằng \(\frac{a}{b}\) với \(a,b\in \mathbb{N},\,\left( a;b \right)=1\). Khi đó giá trị a+b là
Mỗi đề thi có 5 câu được chọn ra từ 100 câu có sẵn. 1 học sinh học thuộc 80 câu. Tính xác suất để học sinh rút ngẫu nhiên ra 1 đề thi có 4 câu đã học thuộc.
Câu hỏi: Mỗi đề thi có 5 câu được chọn ra từ 100 câu có sẵn. 1 học sinh học thuộc 80 câu. Tính xác suất để học sinh rút ngẫu nhiên ra 1 đề thi có 4 câu đã học thuộc. A. 0,08192 B. 0,82 C. 0,42 D. 0,5252 Lời Giải: Đây là các bài toán về Hoán vị, Chỉnh hợp, Tổ hợp có áp dụng các phép đếm. Số phần tử của không gian mẫu Ω là \( \left| {\rm{\Omega }} … [Đọc thêm...] vềMỗi đề thi có 5 câu được chọn ra từ 100 câu có sẵn. 1 học sinh học thuộc 80 câu. Tính xác suất để học sinh rút ngẫu nhiên ra 1 đề thi có 4 câu đã học thuộc.
