• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Ứng dụng Tích phân / Một gia đình muốn làm một cái cổng nhà có đường viền hình parabol có khoảng cách giữa hai chân đế là 4m và chiều cao là 4m như hình vẽ. Biết rằng phần cánh cổng hình chữ nhật \(ABCD\), phần còn lại được trang trí hoa văn. Chi phí làm hoa văn là \(3.000.000\) đồng cho một . Hỏi chi phí thấp nhất cho việc hoàn tất hoa văn trên cổng là bao nhiêu (làm tròn đến hàng nghìn)?

Một gia đình muốn làm một cái cổng nhà có đường viền hình parabol có khoảng cách giữa hai chân đế là 4m và chiều cao là 4m như hình vẽ. Biết rằng phần cánh cổng hình chữ nhật \(ABCD\), phần còn lại được trang trí hoa văn. Chi phí làm hoa văn là \(3.000.000\) đồng cho một . Hỏi chi phí thấp nhất cho việc hoàn tất hoa văn trên cổng là bao nhiêu (làm tròn đến hàng nghìn)?

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan, VDC Toan 2023

Một gia đình muốn làm một cái cổng nhà có đường viền hình parabol có khoảng cách giữa hai chân đế là 4m và chiều cao là 4m như hình vẽ. Biết rằng phần cánh cổng hình chữ nhật \(ABCD\), phần còn lại được trang trí hoa văn. Chi phí làm hoa văn là \(3.000.000\) đồng cho một Một gia đình muốn làm một cái cổng nhà có đường viền hình parabol có khoảng cách giữa hai chân đế là 4m và chiều cao là 4m như hình vẽ. Biết rằng phần cánh cổng hình chữ nhật (ABCD), phần còn lại được trang trí hoa văn. Chi phí làm hoa văn là (3.000.000) đồng cho một <img src="blob:https://booktoan.com/d7d25dbb-a610-4eca-ada2-c4812c512d1f" width="23" height="20">. Hỏi chi phí thấp nhất cho việc hoàn tất hoa văn trên cổng là bao nhiêu (làm tròn đến hàng nghìn)?</p> 1. Hỏi chi phí thấp nhất cho việc hoàn tất hoa văn trên cổng là bao nhiêu (làm tròn đến hàng nghìn)?

A. \(10.250.000\) đồng.

B. \(13.525.000\) đồng.

C. \(18.450.000\) đồng.

D. \(16.230.000\) đồng.

Lời giải:

Đặt hệ trục tọa độ như hình vẽ, khi đó phương trình đường parabol có dạng: \(y = a{x^2} + b\).

Một gia đình muốn làm một cái cổng nhà có đường viền hình parabol có khoảng cách giữa hai chân đế là 4m và chiều cao là 4m như hình vẽ. Biết rằng phần cánh cổng hình chữ nhật (ABCD), phần còn lại được trang trí hoa văn. Chi phí làm hoa văn là (3.000.000) đồng cho một <img src="blob:https://booktoan.com/d7d25dbb-a610-4eca-ada2-c4812c512d1f" width="23" height="20">. Hỏi chi phí thấp nhất cho việc hoàn tất hoa văn trên cổng là bao nhiêu (làm tròn đến hàng nghìn)?</p> 2

Parabol cắt trục tung tại điểm \(\left( {0;4} \right)\) và cắt trục hoành tại \(\left( {2;0} \right)\) nên:

\(\left\{ \begin{array}{l}b = 4\\a{.2^2} + b = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = – 1\\b = 4\end{array} \right.\).

Do đó, phương trình parabol là \(y = – {x^2} + 4\).

Diện tích hình phẳng giới hạn bởi đường parabol và trục hoành là

\({S_1} = \int\limits_{ – 2}^2 {\left( { – {x^2} + 4} \right){\mathop{\rm d}\nolimits} x} \)\( = \left. {\left( { – \frac{{{x^3}}}{3} + 4x} \right)} \right|_{ – 2}^2\)\( = \frac{{32}}{3}\).

Gọi \(C\left( {t;0} \right)\) \( \Rightarrow B\left( {t;4 – {t^2}} \right)\) với \(0 < t < 2\).

Ta có \(CD = 2t\) và \(BC = 4 – {t^2}\). Diện tích hình chữ nhật \(ABCD\) là

\({S_2} = CD.BC\) \( = 2t.\left( {4 – {t^2}} \right)\)\( = – 2{t^3} + 8t\).

Diện tích phần trang trí hoa văn là

\(S = {S_1} – {S_2}\)\( = \frac{{32}}{3} – \left( { – 2{t^3} + 8t} \right)\)\( = 2{t^3} – 8t + \frac{{32}}{3}\).

Xét hàm số \(f\left( t \right) = 2{t^3} – 8t + \frac{{32}}{3}\) với \(0 < t < 2\).

Ta có \(f’\left( t \right) = 6{t^2} – 8 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}t = \frac{2}{{\sqrt 3 }} \in \left( {0;2} \right)\\t = – \frac{2}{{\sqrt 3 }} \notin \left( {0;2} \right)\end{array} \right.\).

Suy ra diện tích phần trang trí nhỏ nhất là bằng \(\frac{{96 – 32\sqrt 3 }}{9}{{\mathop{\rm m}\nolimits} ^2}\), khi \(t = \frac{2}{{\sqrt 3 }}\). Khi đó, chi phí thấp nhất cho việc hoàn tất hoa văn trên cổng nhà sẽ là \(\frac{{96 – 32\sqrt 3 }}{9}.3000000 \approx 13525000\) đồng.

=========== Đây là các câu ÔN THI TN THPT MÔN TOÁN 2023 – CHUYÊN ĐỀ NGUYÊN HAM – TICH PHÂN – ỨNG DỤNG.

Bài liên quan:

  1.   Một khối cầu có bán kính là \(5\left( {dm} \right)\), người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng \(3\left( {dm} \right)\) để làm một chiếc lu đựng nước (như hình vẽ). Tính thể tích mà chiếc lu chứa được.
    A drawing of a sphereDescription automatically generated
  2. Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \({f^3}\left( x \right) + f\left( x \right) = x,\)\(\forall x \in \mathbb{R}.\)Tính \(\int\limits_0^2 {f\left( x \right)} dx.\)
  3.   Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(2f\left( x \right) – f’\left( x \right) = 3x\left( {2x – 5} \right)\), \(\forall x \in \mathbb{R}\). Biết rằng \(f\left( 0 \right) =  – 1\). Giá trị của \(f\left( 2 \right)\) bằng
  4.   Cho hàm số \(f(x)\) liên tục với mọi \(x \ne 0\) thỏa mãn:\(f(x) + 2f\left( {\frac{1}{x}} \right) = 3x\) với \(x \ne 0\). Tính thể tích vật thể tròn xoay khi quay quanh \(Ox\) bởi hình phẳng giới hạn bởi đồ thị hàm số \(y = f(x)\), trục \(Ox\), và hai đường thẳng \(x = 1;\,x = 2\).
  5.   Cho hình vuông \(ABCD\) tâm\(O\), độ dài cạnh là \(4\) cm. Đường cong \(BOC\) là một phần của parabol đỉnh \(O\) chia hình vuông thành hai hình phẳng có diện tích lần lượt là \({S_1}\) và \({S_2}\) (tham khảo hình vẽ).
    Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng
  6. Cho hàm số $f(x)$ có đồ thị hàm số $f^{\prime}(x)$ như hình vẽ dưới đây. Có bao nhiêu số nguyên $m>-10$ để hàm số $y=f(x+m)$ nghịch biến trên $(0 ; 2)$ ?
  7. Biết đồ thị hàm số $y=\frac{1}{4} x^{4}-(3 m+1) x^{2}+2(m+1)$ có ba điểm cực trị $A, B, C$ sao cho $\triangle A B C$ nhận gốc tọa độ $O$ làm trọng tâm. Mệnh đề nào dưới đây đúng?
  8. Cho hàm số $y=\frac{1}{3} m x^{3}-(m-1) x^{2}+3(m-2) x+2023$ với $m$ là tham số. Tìm m để hàm số có 2 cực trị
  9. Tập hợp \(S\) các giá trị nguyên thuộc khoảng \(\left( { – 2023;\;2023} \right)\) của tham số thực \(m\) sao cho phương trình \({\log _2}\left( {x – \sqrt {{x^2} – 4} } \right).{\log _5}\left( {x – \sqrt {{x^2} – 4} } \right) = {\log _m}\left( {x + \sqrt {{x^2} – 4} } \right)\) có nghiệm \(x\) lớn hơn \(3\). Số phần tử của tập hợp \(S\) là

  10. Có bao nhiêu số nguyên dương \(a\) sao cho ứng với mỗi \(a\) có đúng hai số nguyên \(b\) thỏa mãn \(\left( {\log _5^{}b – 1} \right)\left( {a{{\log }_2}b – 6} \right) < 0\)?

  11. Số nghiệm nguyên của phương trình \(\log _{\frac{1}{2}}^2\left( {\frac{8}{{{x^2}}}} \right) – {\log _2}4x = – 2\) là:

  12. Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {0;30} \right]\) để phương trình \({6^x} + 2mx = m{2^x} + 2x{.3^x}\) có đúng 3 nghiệm nguyên dương.

  13. Có bao nhiêu giá trị nguyên của tham số thực \(m\) để phương trình \(4{\left( {{{\log }_{25}}x} \right)^2} – {\log _{\frac{1}{5}}}x + 1 – 3m = 0\) có hai nghiệm phân biệt thuộc khoảng \(\left( {0;1} \right)\).

  14. Có bao nhiêu cặp số nguyên \(\left( {x,y} \right)\) thỏa mãn \(0 \le x \le 2023\) và \({\log _3}\left( {9x + 18} \right) + x = 3y + {27^y}.\)

  15. Cho \(0 \le x \le 2022\) và \({\log _2}\left( {2x + 2} \right) + x – 3y = {8^y}\). Có bao nhiêu cặp \(\left( {x;y} \right)\) nguyên thỏa mãn các điều kiện trên?

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.