• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Cực trị của hàm số / Đề: Trong các hàm sô sau đây, hàm số nào có giá trị nhỏ nhất trân tập xác định ?

Đề: Trong các hàm sô sau đây, hàm số nào có giá trị nhỏ nhất trân tập xác định ?

Ngày 14/05/2019 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Trắc nghiệm cực trị Thông hiểu

trac nghiem ham so don dieu


Câu hỏi:

Trong các hàm sô sau đây, hàm số nào có giá trị nhỏ nhất trân tập xác định ?

  • A. \(y = {x^3} – 3{x^2} – 6\)
  • B. \(y = {x^4} – 3{x^2} – 1\)
  • C. \(y = \frac{{2x + 1}}{{x – 1}}\)
  • D. \(y = \frac{{{x^2} + 3x + 5}}{{x – 1}}\)

Đáp án đúng: B

======
Các bạn xem lại Lý thuyết cực trị hàm số.

Bài liên quan:

  1. Đề: Hàm số \(y = \frac{{{e^x}}}{{x + 1}}\) có bao nhiêu điểm cực trị?
  2. Đề: Cho hàm số \(y = \frac{{{x^2} – 3x + 1}}{x}\) có giá trị cực đại \({y_1}\)và giá trị cực tiểu \({y_2}\). Tính \(S = {y_2} – {y_1}.\)  
  3. Đề: Hàm số \(y = \sin x\) đạt cực đại tại điểm nào sau đây?
  4. Đề: Cho đồ thị của ba hàm số \(y = f(x)\), \(y = f'(x)\), \(y = f''(x)\) được vẽ mô tả ở hình dưới đây. Hỏi đồ thị các hàm số \(y = f(x)\), \(y = f'(x)\) và \(y = f''(x)\) theo thứ tự, lần lượt tương ứng với đường cong nào?
  5. Đề: Cho hàm số \(y = {x^4} – 2{x^2} + 1\). Khoảng cách giữa hai điểm cực tiểu của đồ thị hàm số bằng:
  6. Đề: Cho hàm số \(y = {x^3} – 3{x^2}\). Khoảng cách giữa các điểm cực đại, cực tiểu của đồ thị hàm số là:
  7. Đề: Hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) đạt cực tiểu tại điểm \(x = 0,f\left( 0 \right) = 0\) và đạt cực đại tại điểm \(x = 1,f\left( 1 \right) = 1\). Tìm các hệ số a, b, c, d.
  8. Đề: Tìm tất cả các giá trị thực của tham số m để hàm số \(y = {x^3} + {x^2} – \left( {2m + 1} \right)x + 4\) có đúng hai cực trị.
  9. Đề: Gọi A và B là hai điểm cực trị của đồ thị hàm số \(f\left( x \right) = {x^3} – 3x + 1.\) Tính độ dài AB.
  10. Đề: Cho hàm số \(y=f(x)\) có đạo hàm cấp 2 trên khoảng K và \(x_0\in K\). Khẳng định nào sau đây là khẳng định đúng?
  11. Đề: Tính khoảng cách d giữa hai điểm cực trị của đồ thị hàm số \(y = \frac{1}{3}{x^3} – {x^2} – x – 1.\)
  12. Đề: Cho hàm số \(y = (x – 5)\sqrt[3]{{{x^2}}}\). Mệnh đề nào dưới đây là mệnh đề đúng?
  13. Đề: Cho đồ thị của ba hàm số \(y = f(x),y = f'(x),y = \int\limits_0^x {f\left( t \right){\rm{d}}t}\) ở hình dưới. Xác định xem \(\left( {{C_1}} \right),\left( {{C_2}} \right),\left( {{C_3}} \right)\) tương ứng là đồ thị hàm số nào?
  14. Đề: Cho hàm số f(x) có đạo hàm là \(f'\left( x \right) = {x^4}\left( {x – 1} \right){\left( {2 – x} \right)^3}{\left( {x – 4} \right)^2}\). Hỏi hàm số \(f(x)\) có bao nhiêu điểm cực trị?
  15. Đề: Tìm giá trị thực của tham số m để đồ thị hàm số \(y = {x^4} + 2(m – 4){x^2} + m + 5\)  có ba điểm cực trị tạo thành một tam giác nhận gốc tọa độ O(0;0) là trọng tâm.

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.