• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Bài tập Hàm số / Đề: Chứng minh rằng các phương trình sau đây:1) \(x^{5}-3x-1=0\) có ít nhất 1 nghiệm  \(1

Đề: Chứng minh rằng các phương trình sau đây:1) \(x^{5}-3x-1=0\) có ít nhất 1 nghiệm  \(1

05/03/2020 by admin Để lại bình luận Thuộc chủ đề:Bài tập Hàm số Tag với:Hàm số liên tục

ham so
Đề bài: Chứng minh rằng các phương trình sau đây:1) \(x^{5}-3x-1=0\) có ít nhất 1 nghiệm  \(1

Lời giải

1) Hàm số \(f(x)=x^{5}-3x-1\) liên tục trên đoạn \([1,2]\)
Lại biết \(f(1)f(2)=(1-3-1)(32-6-1)Suy ra đoạn đồ thị hàm số đã cho từ (1;2) cắt trục Ox.
Vậy phương trình \(x^{5}-3x-1=0\) có ít nhất 1 nghiệm  \(1
2) Hàm số \(f(x)=x.2^{x}-1\) liên tục trên đoạn \([0,1]\)
Biết \(f(0)f(1)=(-1)(1)Suy ra đoạn đồ thị hàm số đã cho từ (0;1) cắt trục Ox. 
Vậy phương trình \(x.2^{x}-1\) có ít nhất 1 nghiệm  \(0
x^{5
 

Bài liên quan:

  • Đề: Chứng minh rằng phương trình:   $ 5x^4+40x^3+105x^2+100x+24 = 0 $ có bốn nghiệm âm phân biệt.
  • Đề: Chứng minh rằng phương trình $4x^{4}+2x^{2}-x-3=0$ có ít nhất hai nghiệm phân biệt trên khoảng $(-1,1)$
  • Đề: Chứng minh rằng phương trình $x^{3}+3x^{2}+5x-1=0$ có ít nhất một nghiệm trên khoảng $(0,1)$
  • Đề: Vì sao không thể xác định được $f(0)$ đối với hàm số:$f(x)=\frac{|x|}{x} (x\neq 0)$  để được hàm số $f(x)$ xác định và liên tục trên toàn bộ $R$.
  • Đề: Cho $f,g$ liên tục trên $[a,b]$ và $g(x_{0})\neq 0,x_{0}\in [a,b]$Chứng minh rằng:Nếu: $\begin{cases} 0
  • Đề: Chứng minh rằng nếu hàm số \(f(x)\) xác định và liên tục trên \([a;b]\) thì với các điểm \(x_{1},x_{2},…,x_{n}\) bất kì thuộc \([a;b]\) đều có một số \(c\in [a;b]\) sao cho \(f(c)=\frac{1}{n}[f(x_{1})+f(x_{2})+…+f(x_{n})]\).
  • Đề: Chứng tỏ rằng hàm số sau liên tục trên $R$:   $f(x) = \begin{cases}x \cos \frac{1}{x^2}  khi  x \neq  0  \\ 0  khi  x = 0 \end{cases} $
  • Đề: Xét tính liên tục của hàm số sau trên toàn trục số:  $f(x) = \begin{cases}x^2+x  khi  x
  • Đề: Xét dấu hàm số: $f(x) = 2 + \cos x – 2 \tan \frac{x}{2} $ trên $ (0,\pi )$
  • Tự học Bài Hàm số liên tục – Toán 11

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2020) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.