• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Quốc gia Môn Toán
  • Trắc nghiệm toán 12
  • Máy tính

Đề bài: Cho $a,b,c$ là $3$ cạnh $\triangle ABC$.Chứng minh rằng:$a) \frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c} \geq 3$$b) \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \sqrt{\frac{3}{2Rr}}$(Với $R,r$ là bán kính đường tròn ngoại,nội tiếp $\triangle ABC$ tương ứng)

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $a,b,c$ là $3$ cạnh $\triangle ABC$.Chứng minh rằng:$a) \frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c} \geq 3$$b) \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \sqrt{\frac{3}{2Rr}}$(Với $R,r$ là bán kính đường tròn ngoại,nội tiếp $\triangle ABC$ tương ứng)

Bat dang thuc

Lời giải

Đề bài:
Cho $a,b,c$ là $3$ cạnh $\triangle ABC$.Chứng minh rằng:$a) \frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c} \geq 3$$b) \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \sqrt{\frac{3}{2Rr}}$(Với $R,r$ là bán kính đường tròn ngoại,nội tiếp $\triangle ABC$ tương ứng)
Lời giải

a)Đặt: $\begin{cases}x=b+c-a >0\\ y=c+a-b>0 \\z=a+b-c>0 \end{cases}$
$\Rightarrow \begin{cases}a=\frac{y+z}{2} \\ b=\frac{z+x}{2} \\c=\frac{x+y}{2}\end{cases}$
Suy ra:
Vế trái BĐT=$\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}=\frac{1}{2}(\frac{x}{y}+\frac{y}{x})+\frac{1}{2}(\frac{y}{z}+\frac{z}{y})+\frac{1}{2}(\frac{z}{x}+\frac{x}{z})$
$\geq 1+1+1=3$
$\Rightarrow $ (ĐPCM)

Dấu “=” xảy
ra khi $a=b=c$

b)Ta có:$S=\frac{abc}{4R}=pr\Rightarrow 2Rr=\frac{abc}{a+b+c}$
$\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \sqrt{\frac{3}{2Rr}}\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \sqrt{\frac{3(a+b+c)}{abc}}$
$\Rightarrow (\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^{2}\geq 3(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}) (1)$
Theo BĐT Cauchy:
$ (\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^{2}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+2(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca})=$
$=\frac{1}{2}(\frac{1}{a^{2}}+\frac{1}{b^{2}})+\frac{1}{2}(\frac{1}{b^{2}}+\frac{1}{c^{2}})+\frac{1}{2}(\frac{1}{c^{2}}+\frac{1}{a^{2}})+2(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca})$
$\geq \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}++2(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca})$
$=3(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca})\Rightarrow (1)$đúng
$\Rightarrow $ (ĐPCM)

Dấu “=” xảy
ra khi $a=b=c$

=========
Chuyên mục: Bất đẳng thức Côsi

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Bài liên quan:

  1. Đề bài: Cho $a,b,c$  dương thay đổi. Chứng minh:     $\left ( \frac{a}{b}  \right )^ \frac{3}{2}+\left ( \frac{b}{c}  \right )^ \frac{3}{2} +\left ( \frac{c}{a}  \right )^ \frac{3}{2} \geq  \frac{a}{b}+\frac{b}{c}+\frac{c}{a}   $
  2. Đề bài: Cho \(2\) số dương \(a\) và \(b\). Chứng minh rằng:  \(\frac{a}{b}+\frac{b}{a}\geq 2\)
  3. Đề bài: Cho hình lăng trụ đứng $ABC,A'B'C'$ biết $A(a;0;0), B(-a;0;0), C(0;1;0), B'(-a;0;b)$ với $a,b>0$a) Tính khoảng cách $d$ của hai đường thẳng $B'C$ và $AC'$b) Cho $a, b$ thay đổi mà $a+b=4$. Tìm $a,b$ để $d$ đạt giá trị lớn nhất
  4. Đề bài: Cho $n,m\in N$ và $   n,m\geq 1$. chứng minh rằng:   $\sin^m x.\cos^nx\leq \sqrt{\frac{m^mn^n}{(n+m)^{n+m}}}$
  5. Đề bài: Với $a,b,c>0$ chứng minh rằng:     $\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{a+b+c}{2abc}$.
  6. Đề bài: Tìm giá trị lớn nhất của:$y=\sin^{2} x.\cos ^{6}x$
  7. Đề bài: Chứng minh rằng với mọi $x, y$ dương ta có:  \({x^2} + {y^2} + \frac{1}{x} + \frac{1}{y} \ge 2\left( {\sqrt x  + \sqrt y } \right)\)
  8. Đề bài: Dùng bất đẳng thức Cô-si, tìm GTNN:a)$y=x+\frac{3}{x}; (x>0) $                                               b) GTNN $y=x+\frac{2}{x-3}; (x>3) $c) $y=5^{x+1}+5^{x-2} $                                                d) $y=\frac{2 x^{2}+3x+7 }{x} . (x>0)$
  9. Đề bài: Cho $x,y,z>0;  xyz=1$.Tìm giá trị lớn nhất của biểu thức: $P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}$.
  10. Đề bài: Cho \(xy=4 (x>0, y>0)\). Tìm giá trị nhỏ nhất của:1)    \(x^{2}+y^{2}\)2)    \(x^{4}+y^{4}\)3)    \((x+1)(4y+3)\)
  11. Đề bài: $a,b,c$ là $3$ số khác $0$. Chứng minh rằng $\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{c^2}}} + \frac{{{c^2}}}{{{a^2}}} \ge \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$
  12. Đề bài: Chứng minh rằng : $abc(a+b)(b+c)(c+a)\leq \frac{8}{729}$. Trong đó $a,b,c $ là các số thực không âm thỏa mãn $a+b+c=1$
  13. Đề bài: Với $a,b,c>0$ và $a+b+c\leq 1$ chứng minh rằng:     $\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\geq 9$.
  14. Đề bài: Cho $n\in Z,n\geq 2.$Chứng minh rằng:$\sqrt[n]{1+\frac{\sqrt[n]{n}}{n}}+\sqrt[n]{1-\frac{\sqrt[n]{n}}{n}}
  15. Đề bài: $1.$ Cho hình thang cân $ABCD$ có đáy là $AD, BC$, $\widehat {BAD} = {30^0}$. Biết  $\overrightarrow{AB}=\overrightarrow {a} ,\overrightarrow {AD}  =\overrightarrow {b} .$Hãy biểu diễn các véctơ $\overrightarrow {BC} ,\overrightarrow {CD},\overrightarrow {AC}  ,\overrightarrow {BD} $ theo các véctơ $\overrightarrow {a},\overrightarrow {b}  .$$2.$ Chứng minh rằng $\forall  \in (0;\frac{\pi}{2} )$ đều có$cosx +sinx +tanx+cotx+\frac{1}{sinx }+\frac{1}{cosx } >6$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2022) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.