• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: 1)    Với $x \in [ – 1;1] $,   chứng minh $\sqrt[4]{2} < \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + x}} \le 2$2)    Tìm miền giá trị của   $y=\sin^{2n}x+\cos^{2n}x$ với $n\in Z^+$ 3)    Chứng minh:   $4^{|\sin x|} + 2^{|\cos x|} \ge 3$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

adsense
Đề bài: 1)    Với $x \in [ – 1;1] $,   chứng minh $\sqrt[4]{2} < \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + x}} \le 2$2)    Tìm miền giá trị của   $y=\sin^{2n}x+\cos^{2n}x$ với $n\in Z^+$ 3)    Chứng minh:   $4^{|\sin x|} + 2^{|\cos x|} \ge 3$

Bat dang thuc

Lời giải

Đề bài:
1)    Với $x \in [ – 1;1] $,   chứng minh $\sqrt[4]{2} < \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + x}} \le 2$2)    Tìm miền giá trị của   $y=\sin^{2n}x+\cos^{2n}x$ với $n\in Z^+$ 3)    Chứng minh:   $4^{|\sin x|} + 2^{|\cos x|} \ge 3$
Lời giải

adsense

1)  Xét hàm số : $y = \sqrt[4]{{1 – x}} + \sqrt[4]{{1 + x}}$ với $x \in {\rm{[ – 1;1]}}$
${y^’} =  – \frac{1}{4}{(1 – x)^{ – 3/4}} + \frac{1}{4}{(1 + x)^{ – 3/4}} = \frac{1}{4}\left[ {\frac{1}{{\sqrt[4]{{(1 + x)^3}}}} – \frac{1}{{\sqrt[4]{{{{(1 – x)}^3}}}}}} \right]$
${y^’} = 0$ khi $1 + x = 1 – x \Rightarrow x = 0$
Bảng biến thiên của y
Từ bảng này suy ra  $y(-1)=y(1) \le y(x) \le y(0)$
tức là  $\sqrt[4]{2} \le y = \sqrt[4]{{1 + x}} + \sqrt[4]{{1 – x}} \le 2$
2) $y = {\left( {{{\sin }^2}x} \right)^n} + {(1 – {\sin ^2}x)^n}.$ Đặt ${\sin ^2}x = t \in {\rm{[0,1]}}$
$ \Rightarrow y(t) = {t^n} + {(1 – t)^n}$ với $t \in {\rm{[0,1]}}$
${y^’} =n[t^{n-1}-(1-t)^{n-1}],  {y^’} = 0$ khi $t = \frac{1}{2}$
Bảng biến thiên
Từ bảng này suy ra  $y(0)=y(1) \ge y(t) \ge y(\frac{1}{2})$
tức là  $1 \ge y(t) \ge \frac{1}{2^{n-1}}$
Vậy miền giá trị của y là $\left[ {\frac{{\rm{1}}}{{{{\rm{2}}^{{\rm{n – 1}}}}}},1} \right]$
3) Chú ý rằng với  $ 0 \le |\sin x|, |\cos x| \le 1$ thì $ \sin^2 x \le |\sin x|, \cos^2 x| \le |\cos x| $.
Ta có ${4^{|{\mathop{\rm s}\nolimits} {\rm{inx|}}}} + {2^{|c{\rm{osx|}}}} \ge {4^{{{\sin }^2}x}} + {2^{c{\rm{o}}{{\rm{s}}^{\rm{2}}}x}} = $
$ = {4^{1 – c{\rm{o}}{{\rm{s}}^{\rm{2}}}{\rm{x}}}} + {2^{c{\rm{o}}{{\rm{s}}^{\rm{2}}}x}} = \frac{4}{{{4^{c{\rm{o}}{{\rm{s}}^{\rm{2}}}x}}}} + \frac{{{2^{c{\rm{o}}{{\rm{s}}^{\rm{2}}}{\rm{x}}}}}}{{\rm{2}}} + \frac{{{2^{c{\rm{o}}{{\rm{s}}^{\rm{2}}}x}}}}{2}  $$ \underbrace {\ge}_{Cô-si}  $ 3 ( ĐPCM)

=========
Chuyên mục: Ứng dụng hàm số để chứng minh Bất đẳng thức

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Bài liên quan:

  1. Đề bài: Chứng minh rằng:$\frac{x}{1+x}
  2. Đề bài: Chứng minh rằng:$\frac{x}{1+x}
  3. Đề bài: Cho $x>y>1$.Chứng minh rằng:$5y^{4}(x-y)
  4. Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a}
  5. Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a}
  6. Đề bài: Chứng minh rằng:$a.|\sin x -\sin y|\leq |x-y|, \forall x,y \in R$$b.|\sin x|\leq |x|, \forall x \in R$
  7. Đề bài: Chứng minh rằng:$a.|\sin x -\sin y|\leq |x-y|, \forall x,y \in R$$b.|\sin x|\leq |x|, \forall x \in R$
  8. Đề bài: Cho $\begin{cases}0
  9. Đề bài: Cho $x,y \geq 0$ và $x+y=1$. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức :                        $P=3^{2x}+3^y$.
  10. Đề bài: Cho $\begin{cases}0
  11. Đề bài: Tìm giá trị lớn nhất của hàm số :$f(x)=x+\sqrt{4-x^2}$ trên miền $-2\leq x\leq 2$.
  12. Đề bài: Cho $x,y \geq 0$ và $x+y=1$. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức :                        $P=3^{2x}+3^y$.
  13. Đề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $f(x)=\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}$ với $-3\leq x\leq 6$.
  14. Đề bài: Tìm giá trị lớn nhất của hàm số :$f(x)=x+\sqrt{4-x^2}$ trên miền $-2\leq x\leq 2$.
  15. Đề bài:  Chứng minh rằng với mọi số thực $a, b, c$ thỏa mãn điều kiện $a + b + c= 1$ thì:              $\frac{1}{3^a} + \frac{1}{3^b} + \frac{1}{3^c} \ge 3\left( {\frac{a}{3^a} + \frac{b}{3^b} + \frac{c}{3^c}} \right)$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.