• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Nguyên hàm / Tốc độ phát triển của số lượng vi khuẩn trong hồ bơi được mô hình bởi hàm số $B'(t)=\dfrac{1000}{{{\left( 1+0,3t \right)}^{2}}}$, $t\ge 0$, trong đó $B(t)$ là số lượng vi khuẩn trên mỗi ml nước tại ngày thứ $t$

Tốc độ phát triển của số lượng vi khuẩn trong hồ bơi được mô hình bởi hàm số $B'(t)=\dfrac{1000}{{{\left( 1+0,3t \right)}^{2}}}$, $t\ge 0$, trong đó $B(t)$ là số lượng vi khuẩn trên mỗi ml nước tại ngày thứ $t$

Ngày 23/01/2026 Thuộc chủ đề:Trắc nghiệm Nguyên hàm Tag với:Tra loi ngan - Nguyen ham

Tốc độ phát triển của số lượng vi khuẩn trong hồ bơi được mô hình bởi hàm số $B'(t)=\dfrac{1000}{{{\left( 1+0,3t \right)}^{2}}}$, $t\ge 0$, trong đó $B(t)$ là số lượng vi khuẩn trên mỗi ml nước tại ngày thứ $t$. Số lượng vi khuẩn ban đầu là 500 con trên mỗi ml nước. Biết rằng mức độ an toàn cho người sử dụng hồ bơi là số vi khuẩn phải dưới 3000 con trên mỗi ml nước. Hỏi sau bao nhiêu ngày thì người ta phải xử lí và thay nước mới cho hồ bơi.

Lời giải

Trả lời: 10

Theo giả thiết, số lượng vi khuẩn tăng với tốc độ là hàm số $B'(t)$, nên $B(t)$ chính là nguyên hàm của $B'(t)$ :

$B(t)=\int{{B}’\left( t \right)\text{dt}}=\int{\dfrac{1000}{{{(1+0,3t)}^{2}}}\text{dt}=1000\int{{{(1+0,3t)}^{-2}}\text{dt}=-\dfrac{1000}{0,3(1+0,3t)}+C}}$

Số lượng vi khuẩn lúc ban đầu là 500 con trên mỗi ml nước nên:

$B(0)=500\Leftrightarrow -\dfrac{1000}{0,3(1+0,3.0)}+C=500\Leftrightarrow C=\dfrac{11500}{3}.$

Suy ra hàm số biểu thị cho số lượng vi khuẩn tại ngày thứ $t$ là:

$B(t)=-\dfrac{1000}{0,3(1+0,3t)}+\dfrac{11500}{3}.$

Số lượng vi khuẩn dưới 3000 con trên mỗi ml nước thì người bơi vẫn an toàn, ta có:

$B(t){<}3000\Leftrightarrow -\dfrac{1000}{0,3(1+0,3t)}+\dfrac{11500}{3}{<}3000$

$\Leftrightarrow -\dfrac{1000}{0,3(1+0,3t)}{<}-\dfrac{2500}{3}\Leftrightarrow 1+0,3t{<}4\Leftrightarrow t{<}10.$

Vậy vào ngày thứ 10 hồ bơi không còn an toàn, cần phải thay nước mới.

Bài liên quan:

  1. Trọng lượng của một bào thai người nặng khoảng 0,04 ounce (1 ounce = 28,3485 gram) sau 8 tuần tuổi
  2. Doanh thu bán hàng của một doanh nghiệp khi bán một loại sản phẩm là số tiền $R\left( x \right)$ (triệu đồng) thu được khi $x$ đơn vị sản phẩm được bán ra
  3. Một bác thợ xây bơm nước vào bể chứa nước
  4. Một vật chuyển động trong 4 giờ với vận tốc $v\left( \text{km/h} \right)$ phụ thuộc vào thời gian $t\left( \text{h} \right)$ có đồ thị vận tốc là một đường parabol có đỉnh $I(3;10)$ và trục đối xứng vuông góc với trục hoành như hình vẽ
  5. Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu chuyển động với vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới
  6. Cường độ dòng điện trong một dây dẫn tại thời điểm $t$ giây là:

    $I\left( t \right)={Q}’\left( t \right)=3{{t}^{2}}-6t+5,$ với $Q\left( t \right)$ là điện lượng truyền trong dây dẫn tại thời điểm $t$

  7. Cây cà chua khi trồng có chiều cao 5 cm
  8. Khi nghiên cứu dịch sốt xuất huyết ở một địa phương, các chuyên gia y tế ước tính rằng tại ngày thứ ${m}$ có ${F(m)}$ người mắc bệnh (sau khi đã làm tròn đến chữ số hàng đơn vị)
  9. Trong một dịch cúm, tốc độ tăng số trường hợp mắc bệnh của một thành phố được ước lượng bởi ${{N}^{\prime }}(t)=10\cdot {{e}^{0,2t}}$ (trường hợp/ngày) trong đó ${N(t)}$ là số trường hợp mắc bệnh sau thời gian ${t}$ ngày kể từ khi bắt đầu dịch
  10. Giả sử tốc độ tăng trưởng của một quần thể muỗi thoả mãn công thức

    ${N^{\prime}(t)=0,2 N(t), 0 \leq t \leq 5,

    }$ trong đó ${t}$ là thời gian tính theo ngày, ${N(t)}$ là số cá thể muỗi tại thời điểm ${t}$

  11. Một vật chuyển động dọc theo một đường thẳng (có gắn trục toạ độ ${O x}$ với độ dài đơn vị bằng 1m)
  12. Một quần thể vi sinh vật có tốc độ tăng số lượng cá thể được ước lượng bởi

    ${{P}^{\prime }}(t)=150\sqrt{t}$ (cá thể/ngày) với ${P^{\prime}(t)=150 \sqrt{t} \text { (cá th?/ngày) v?i } 0 \leq t \leq 10,

    }$ trong đó ${P(t)}$ là số lượng cá thể vi sinh vật tại thời điểm ${t}$ ngày kể từ thời điểm ban đầu

  13. Đối với các dự án xây dựng, chi phí nhân công lao động được tính theo số ngày công
  14. Người ta thay nước mới cho một bể bơi có dạng hình hộp chữ nhật có độ sâu là ${h_1=280 {cm}}$
  15. Một hồ nuớc bị ô nhiễm được xử lí bằng một chất diệt khuẩn
Theo dõi
Đăng nhập
Thông báo của

0 Góp ý
Phản hồi nội tuyến
Xem tất cả bình luận

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.

wpDiscuz