• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Nguyên hàm / Một viên đạn được bắn thẳng đứng lên trên từ độ cao $2\text{m}$ với vận tốc tại thời điểm $t$ cho bởi công thức $v\left( t \right)=100-9,8t\left( \text{m/s} \right)$, ( $t=0$ là thời điểm viên đạn được bắn lên)

Một viên đạn được bắn thẳng đứng lên trên từ độ cao $2\text{m}$ với vận tốc tại thời điểm $t$ cho bởi công thức $v\left( t \right)=100-9,8t\left( \text{m/s} \right)$, ( $t=0$ là thời điểm viên đạn được bắn lên)

Ngày 23/01/2026 Thuộc chủ đề:Trắc nghiệm Nguyên hàm Tag với:Tra loi ngan - Nguyen ham

Một viên đạn được bắn thẳng đứng lên trên từ độ cao $2\text{m}$ với vận tốc tại thời điểm $t$ cho bởi công thức $v\left( t \right)=100-9,8t\left( \text{m/s} \right)$, ( $t=0$ là thời điểm viên đạn được bắn lên). Tìm độ cao (tính theo $\text{km}$ ) của viên đạn so với mặt đất ở thời điểm 1 giây sau khi viên đạn đạt độ cao lớn nhất (làm tròn đến hàng phần trăm).

Lời giải

Đáp án: $0,51$.

Gọi $h\left( t \right)$ là độ cao (tính bằng mét) của viên đạn tại thời điểm $t$ (tính bằng giây).

Ta có: $h\left( t \right)=\int{v\left( t \right)\text{d}t=\int{\left( 100-9,8t \right)\text{d}t=-4,9{{t}^{2}}+100t+C}}$.

Tại thời điểm $t=0$, ta có $h\left( t \right)=2\Rightarrow C=2$.

Vậy $h\left( t \right)=-4,9{{t}^{2}}+100t+2$.

${h}’\left( t \right)=-9,8t+100;$

${h}’\left( t \right)=0\Leftrightarrow t=\dfrac{500}{49}$.

BBT:

de thi toan online

Từ bảng biến thiên suy ra viên đạn đạt độ cao lớn nhất tại thời điểm $t=\dfrac{500}{49}$.

Do đó độ cao của viên đạn so với mặt đất ở thời điểm 1 giây sau khi viên đạn đạt độ cao lớn nhất là $h\left( \dfrac{500}{49}+1 \right)\approx 507,3\text{m}\approx 0,51\text{km}$.

Bài liên quan:

  1. Hai công ty, công ty A và công ty B, cùng ra mắt sản phẩm cạnh tranh thị trường mới vào cùng thời điểm
  2. Một gia đình sản xuất chiếu cói ở Nga Sơn mỗi ngày sản xuất được $x$ chiếc chiếu $\left( 0\le x\le 2
  3. Người ta truyền nhiệt cho một bình nuôi cấy vi sinh vật từ $1^\circ$C
  4. Một hồ bơi có dạng hình hộp chữ nhật có chiều cao $3{,}0$m đang không chứa nước
  5. Một quần thể vi khuẩn ban đầu gồm $500$ vi khuẩn, sau đó bắt đầu tăng trưởng
  6. Cho $F(x)$ là một nguyên hàm của hàm số $f(x) = ax + \dfrac{b}{x^2}$ $(x \neq 0)$
  7. Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin x$ và đồ thị hàm số $y=F(x)$ đi qua điểm $M\left(0;1\right)$
  8. Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}\setminus \{1;2\}$ và thỏa mãn $f^{\prime}(x)=|x-1|+|x-2|$, $f(0)+f\left(\dfrac{3}{2}\right)=1;f(4)=2$
  9. Biết $F(x)$ là một họ nguyên hàm của $f(x)=\dfrac{x}{(x+1)^3}$ và $F(0)=\dfrac{1}{2}$
  10. Cho $F(x)$ là một nguyên hàm của hàm số $f(x)=\dfrac{1}{2x-1}$; biết $F(1)=2$
  11. Cho hàm số $f(x)=2x-3\cos x$
  12. Nguyên hàm của hàm số $f(x)=\tan^2{x}$

    a) $\int{f(x)}dx=\tan{x}-x+C$

    b) $\int{f(x)}dx=\tan{x}+x+C$

    c) $\int{f(x)}dx=-\int\dfrac{1}{\cos^2{x}+xdx}$

    d) $\int{f(x)}dx=\int\dfrac{1}{\cos^2{x}}-xdx$

    Lời giải:
    (Đúng) $\int{f(x)}dx=\tan{x}-x+C$
    (Vì): Vì đây là kết quả chính xác của nguyên hàm $\int \tan^2{x} dx$

  13. Khi được thả từ độ cao 8,5 m, một vật rơi với gia tốc không đổi $a=17m/{{s}^{2}}$
  14. Cây cà chua khi trồng có chiều cao $5$ cm
  15. Cho $F\left( x \right)=\left( a{{x}^{2}}+bx+c \right){{\text{e}}^{-x}}$ là một nguyên hàm của hàm số $f\left( x \right)=\left( x^2-3x+2 \right){{\text{e}}^{-x}}$
Theo dõi
Đăng nhập
Thông báo của

0 Góp ý
Phản hồi nội tuyến
Xem tất cả bình luận

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.

wpDiscuz