Câu hỏi:
Cho hình chóp tứ giác đều\(S.ABCD\),\(O\)là giao điểm của\(AC\)và\(BD\), biết. Gọi\(\alpha \)là góc giữa\(SA\)với mặt phẳng\((SBC)\). Tính\(\sin \alpha \).
A. \(\sin \alpha= \frac{4}{{\sqrt {30} }}\).
B. \(\sin \alpha= \frac{2}{{\sqrt {15} }}\).
C. \(\sin \alpha= \frac{2}{{\sqrt {30} }}\).
D. \(\sin \alpha= \frac{4}{{\sqrt {15} … [Đọc thêm...] về Cho hình chóp tứ giác đều\(S.ABCD\),\(O\)là giao điểm của\(AC\)và\(BD\), biết. Gọi\(\alpha \)là góc giữa\(SA\)với mặt phẳng\((SBC)\). Tính\(\sin \alpha \).
Goc trong HHKG 11
Cho hình chóp\(S.ABCD\,\)có đáy\(ABCD\,\)là hình thoi cạnh\(a\,\);\(\widehat {ABC} = {60^\circ }\,\)và \(SB = a\,\). Hình chiếu vuông góc của điểm\(S\)lên mặt phẳng\((ABC)\)trùng với trọng tâm của tam giác\(ABC\). Gọi\(\varphi \)là góc giữa đường thẳng\(SB\)và mặt phẳng\((SCD)\). Tính\(\sin \varphi \).
Câu hỏi:
Cho hình chóp\(S.ABCD\,\)có đáy\(ABCD\,\)là hình thoi cạnh\(a\,\);\(\widehat {ABC} = {60^\circ }\,\)và \(SB = a\,\). Hình chiếu vuông góc của điểm\(S\)lên mặt phẳng\((ABC)\)trùng với trọng tâm của tam giác\(ABC\). Gọi\(\varphi \)là góc giữa đường thẳng\(SB\)và mặt phẳng\((SCD)\). Tính\(\sin \varphi \).
A. \(\sin \varphi= \frac{{\sqrt 3 }}{2}\).
B. \(\sin … [Đọc thêm...] về Cho hình chóp\(S.ABCD\,\)có đáy\(ABCD\,\)là hình thoi cạnh\(a\,\);\(\widehat {ABC} = {60^\circ }\,\)và \(SB = a\,\). Hình chiếu vuông góc của điểm\(S\)lên mặt phẳng\((ABC)\)trùng với trọng tâm của tam giác\(ABC\). Gọi\(\varphi \)là góc giữa đường thẳng\(SB\)và mặt phẳng\((SCD)\). Tính\(\sin \varphi \).
Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình chữ nhật có cạnh\(AB = a\), \(BC = 2a\). Hai mặt bên\((SAB)\) và\((SAD)\)cùng vuông góc với mặt phẳng đáy\((ABCD)\), cạnh\(SA = a\sqrt {15} \). Tính góc tạo bởi đường thẳng\(SC\) và mặt phẳng\((ABCD)\).
Câu hỏi:
Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình chữ nhật có cạnh\(AB = a\), \(BC = 2a\). Hai mặt bên\((SAB)\) và\((SAD)\)cùng vuông góc với mặt phẳng đáy\((ABCD)\), cạnh\(SA = a\sqrt {15} \). Tính góc tạo bởi đường thẳng\(SC\) và mặt phẳng\((ABCD)\).
A. \({30^\circ }\).
B. \({45^\circ }\).
C. \({60^\circ }\).
D. \({90^\circ }\).
GY:
Ta có \(\left\{ … [Đọc thêm...] về Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình chữ nhật có cạnh\(AB = a\), \(BC = 2a\). Hai mặt bên\((SAB)\) và\((SAD)\)cùng vuông góc với mặt phẳng đáy\((ABCD)\), cạnh\(SA = a\sqrt {15} \). Tính góc tạo bởi đường thẳng\(SC\) và mặt phẳng\((ABCD)\).
Chohình chóp tứ giác đều\(S.ABCD\),đáycó tâm\(O\)và cạnhbằng\(a\),\(SO = \frac{{a\sqrt {30} }}{2}\).Gọi\(M\),\(N\)lần lượt là trung điểm của\(SA\),\(BC\). Tính góc giữa đường thẳng\(MN\)và mặt phẳng \((ABCD)\).
Câu hỏi:
Chohình chóp tứ giác đều\(S.ABCD\),đáycó tâm\(O\)và cạnhbằng\(a\),\(SO = \frac{{a\sqrt {30} }}{2}\).Gọi\(M\),\(N\)lần lượt là trung điểm của\(SA\),\(BC\). Tính góc giữa đường thẳng\(MN\)và mặt phẳng \((ABCD)\).
A. \({30^\circ }\).
B. \({45^\circ }\).
C. \({60^\circ }\).
D. \({90^\circ }\).
GY:
.
Gọi\(H\)là trung điểm\(AO\).Ta … [Đọc thêm...] về Chohình chóp tứ giác đều\(S.ABCD\),đáycó tâm\(O\)và cạnhbằng\(a\),\(SO = \frac{{a\sqrt {30} }}{2}\).Gọi\(M\),\(N\)lần lượt là trung điểm của\(SA\),\(BC\). Tính góc giữa đường thẳng\(MN\)và mặt phẳng \((ABCD)\).
Cho hình hộp \(ABC
D. A’B’C’D’\) có đáy \(ABCD\) là hình chữ nhật, hình chiếu vuông góc của \(A’\) lên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm \(H\) của \(AB\). Cho \(AB = 2a\) \(AD = 4a\) \(AA’ = 8a\). Gọi \(E\), \(N\), \(M\) lần lượt là trung điểm của \(BC\), \(DE\), \(A’B\). Gọi \(\alpha \) là góc giữa \(MN\) và \(AD’\).
Thì\(\tan \alpha \) là
Câu hỏi:
Cho hình hộp \(ABC
D. A'B'C'D'\) có đáy \(ABCD\) là hình chữ nhật, hình chiếu vuông góc của \(A'\) lên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm \(H\) của \(AB\). Cho \(AB = 2a\) \(AD = 4a\) \(AA' = 8a\). Gọi \(E\), \(N\), \(M\) lần lượt là trung điểm của \(BC\), \(DE\), \(A'B\). Gọi \(\alpha \) là góc giữa \(MN\) và \(AD'\).
Thì\(\tan \alpha \) … [Đọc thêm...] về Cho hình hộp \(ABC D. A’B’C’D’\) có đáy \(ABCD\) là hình chữ nhật, hình chiếu vuông góc của \(A’\) lên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm \(H\) của \(AB\). Cho \(AB = 2a\) \(AD = 4a\) \(AA’ = 8a\). Gọi \(E\), \(N\), \(M\) lần lượt là trung điểm của \(BC\), \(DE\), \(A’B\). Gọi \(\alpha \) là góc giữa \(MN\) và \(AD’\). Thì\(\tan \alpha \) là
Cho hình lăng trụ đứng\(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\)có đáy\(ABC\)là tam giác cân \(AB = AC = a\), \(\widehat {BAC} = {120^\circ }\), cạnh bên\(A{A^\prime } = a\sqrt 2 \). Tính góc giữa hai đường thẳng\(A{B^\prime }\)và\(BC\).
Câu hỏi:
Cho hình lăng trụ đứng\(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\)có đáy\(ABC\)là tam giác cân \(AB = AC = a\), \(\widehat {BAC} = {120^\circ }\), cạnh bên\(A{A^\prime } = a\sqrt 2 \). Tính góc giữa hai đường thẳng\(A{B^\prime }\)và\(BC\).
A. \({90^\circ }\).
B. \({30^\circ }\).
C. \({45^\circ }\).
D. \({60^\circ }\).
GY:
Ta có:\(B{C^2} = … [Đọc thêm...] về Cho hình lăng trụ đứng\(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\)có đáy\(ABC\)là tam giác cân \(AB = AC = a\), \(\widehat {BAC} = {120^\circ }\), cạnh bên\(A{A^\prime } = a\sqrt 2 \). Tính góc giữa hai đường thẳng\(A{B^\prime }\)và\(BC\).
Cho hình chóp\(S.ABCD\)có đáy là hình thoi cạnh\(AB = a\)và\(\mathop {ABC}\limits^\langle = {60^0}\). Hình chiếu vuông góc\(H\)của đỉnh\(S\)trên mặt phẳng đáy là trung điểm của cạnh\(AB\), góc giữa đường thẳng\(SC\)và mặt phẳng đáy bằng\({60^\circ }\). Tính cosin góc giữa hai đường thẳng\(SB\)và\(AC\)
Câu hỏi:
Cho hình chóp\(S.ABCD\)có đáy là hình thoi cạnh\(AB = a\)và\(\mathop {ABC}\limits^\langle = {60^0}\). Hình chiếu vuông góc\(H\)của đỉnh\(S\)trên mặt phẳng đáy là trung điểm của cạnh\(AB\), góc giữa đường thẳng\(SC\)và mặt phẳng đáy bằng\({60^\circ }\). Tính cosin góc giữa hai đường thẳng\(SB\)và\(AC\)
A. \(\frac{{ - 2}}{{\sqrt 5 }}\).
B. \(\frac{1}{{2\sqrt … [Đọc thêm...] về Cho hình chóp\(S.ABCD\)có đáy là hình thoi cạnh\(AB = a\)và\(\mathop {ABC}\limits^\langle = {60^0}\). Hình chiếu vuông góc\(H\)của đỉnh\(S\)trên mặt phẳng đáy là trung điểm của cạnh\(AB\), góc giữa đường thẳng\(SC\)và mặt phẳng đáy bằng\({60^\circ }\). Tính cosin góc giữa hai đường thẳng\(SB\)và\(AC\)