• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Goc trong HHKG 11

Cho hình chóp tứ giác đều\(S.ABCD\),\(O\)là giao điểm của\(AC\)và\(BD\), biết. Gọi\(\alpha \)là góc giữa\(SA\)với mặt phẳng\((SBC)\). Tính\(\sin \alpha \).

Ngày 13/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Goc trong HHKG 11, Trac nghiem goc giua hai duong thang

Câu hỏi: Cho hình chóp tứ giác đều\(S.ABCD\),\(O\)là giao điểm của\(AC\)và\(BD\), biết. Gọi\(\alpha \)là góc giữa\(SA\)với mặt phẳng\((SBC)\). Tính\(\sin \alpha \). A. \(\sin \alpha= \frac{4}{{\sqrt {30} }}\). B. \(\sin \alpha= \frac{2}{{\sqrt {15} }}\). C. \(\sin \alpha= \frac{2}{{\sqrt {30} }}\). D. \(\sin \alpha= \frac{4}{{\sqrt {15} … [Đọc thêm...] về

Cho hình chóp tứ giác đều\(S.ABCD\),\(O\)là giao điểm của\(AC\)và\(BD\), biết. Gọi\(\alpha \)là góc giữa\(SA\)với mặt phẳng\((SBC)\). Tính\(\sin \alpha \).

Cho hình chóp\(S.ABCD\,\)có đáy\(ABCD\,\)là hình thoi cạnh\(a\,\);\(\widehat {ABC} = {60^\circ }\,\)và \(SB = a\,\). Hình chiếu vuông góc của điểm\(S\)lên mặt phẳng\((ABC)\)trùng với trọng tâm của tam giác\(ABC\). Gọi\(\varphi \)là góc giữa đường thẳng\(SB\)và mặt phẳng\((SCD)\). Tính\(\sin \varphi \).

Ngày 13/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Goc trong HHKG 11, Trac nghiem goc giua hai duong thang

Câu hỏi: Cho hình chóp\(S.ABCD\,\)có đáy\(ABCD\,\)là hình thoi cạnh\(a\,\);\(\widehat {ABC} = {60^\circ }\,\)và \(SB = a\,\). Hình chiếu vuông góc của điểm\(S\)lên mặt phẳng\((ABC)\)trùng với trọng tâm của tam giác\(ABC\). Gọi\(\varphi \)là góc giữa đường thẳng\(SB\)và mặt phẳng\((SCD)\). Tính\(\sin \varphi \). A. \(\sin \varphi= \frac{{\sqrt 3 }}{2}\). B. \(\sin … [Đọc thêm...] về

Cho hình chóp\(S.ABCD\,\)có đáy\(ABCD\,\)là hình thoi cạnh\(a\,\);\(\widehat {ABC} = {60^\circ }\,\)và \(SB = a\,\). Hình chiếu vuông góc của điểm\(S\)lên mặt phẳng\((ABC)\)trùng với trọng tâm của tam giác\(ABC\). Gọi\(\varphi \)là góc giữa đường thẳng\(SB\)và mặt phẳng\((SCD)\). Tính\(\sin \varphi \).

Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình chữ nhật có cạnh\(AB = a\), \(BC = 2a\). Hai mặt bên\((SAB)\) và\((SAD)\)cùng vuông góc với mặt phẳng đáy\((ABCD)\), cạnh\(SA = a\sqrt {15} \). Tính góc tạo bởi đường thẳng\(SC\) và mặt phẳng\((ABCD)\).

Ngày 13/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Goc trong HHKG 11, Trac nghiem goc giua hai duong thang

Câu hỏi: Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình chữ nhật có cạnh\(AB = a\), \(BC = 2a\). Hai mặt bên\((SAB)\) và\((SAD)\)cùng vuông góc với mặt phẳng đáy\((ABCD)\), cạnh\(SA = a\sqrt {15} \). Tính góc tạo bởi đường thẳng\(SC\) và mặt phẳng\((ABCD)\). A. \({30^\circ }\). B. \({45^\circ }\). C. \({60^\circ }\). D. \({90^\circ }\). GY: Ta có \(\left\{ … [Đọc thêm...] về

Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình chữ nhật có cạnh\(AB = a\), \(BC = 2a\). Hai mặt bên\((SAB)\) và\((SAD)\)cùng vuông góc với mặt phẳng đáy\((ABCD)\), cạnh\(SA = a\sqrt {15} \). Tính góc tạo bởi đường thẳng\(SC\) và mặt phẳng\((ABCD)\).

Chohình chóp tứ giác đều\(S.ABCD\),đáycó tâm\(O\)và cạnhbằng\(a\),\(SO = \frac{{a\sqrt {30} }}{2}\).Gọi\(M\),\(N\)lần lượt là trung điểm của\(SA\),\(BC\). Tính góc giữa đường thẳng\(MN\)và mặt phẳng \((ABCD)\).

Ngày 13/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Goc trong HHKG 11, Trac nghiem goc giua hai duong thang

Câu hỏi: Chohình chóp tứ giác đều\(S.ABCD\),đáycó tâm\(O\)và cạnhbằng\(a\),\(SO = \frac{{a\sqrt {30} }}{2}\).Gọi\(M\),\(N\)lần lượt là trung điểm của\(SA\),\(BC\). Tính góc giữa đường thẳng\(MN\)và mặt phẳng \((ABCD)\). A. \({30^\circ }\). B. \({45^\circ }\). C. \({60^\circ }\). D. \({90^\circ }\). GY: . Gọi\(H\)là trung điểm\(AO\).Ta … [Đọc thêm...] về

Chohình chóp tứ giác đều\(S.ABCD\),đáycó tâm\(O\)và cạnhbằng\(a\),\(SO = \frac{{a\sqrt {30} }}{2}\).Gọi\(M\),\(N\)lần lượt là trung điểm của\(SA\),\(BC\). Tính góc giữa đường thẳng\(MN\)và mặt phẳng \((ABCD)\).

Cho hình hộp \(ABC

D. A’B’C’D’\) có đáy \(ABCD\) là hình chữ nhật, hình chiếu vuông góc của \(A’\) lên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm \(H\) của \(AB\). Cho \(AB = 2a\) \(AD = 4a\) \(AA’ = 8a\). Gọi \(E\), \(N\), \(M\) lần lượt là trung điểm của \(BC\), \(DE\), \(A’B\). Gọi \(\alpha \) là góc giữa \(MN\) và \(AD’\).

Thì\(\tan \alpha \) là

Ngày 13/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Goc trong HHKG 11, Trac nghiem goc giua hai duong thang

Câu hỏi: Cho hình hộp \(ABC D. A'B'C'D'\) có đáy \(ABCD\) là hình chữ nhật, hình chiếu vuông góc của \(A'\) lên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm \(H\) của \(AB\). Cho \(AB = 2a\) \(AD = 4a\) \(AA' = 8a\). Gọi \(E\), \(N\), \(M\) lần lượt là trung điểm của \(BC\), \(DE\), \(A'B\). Gọi \(\alpha \) là góc giữa \(MN\) và \(AD'\). Thì\(\tan \alpha \) … [Đọc thêm...] về

Cho hình hộp \(ABC

D. A’B’C’D’\) có đáy \(ABCD\) là hình chữ nhật, hình chiếu vuông góc của \(A’\) lên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm \(H\) của \(AB\). Cho \(AB = 2a\) \(AD = 4a\) \(AA’ = 8a\). Gọi \(E\), \(N\), \(M\) lần lượt là trung điểm của \(BC\), \(DE\), \(A’B\). Gọi \(\alpha \) là góc giữa \(MN\) và \(AD’\).

Thì\(\tan \alpha \) là

Cho hình lăng trụ đứng\(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\)có đáy\(ABC\)là tam giác cân \(AB = AC = a\), \(\widehat {BAC} = {120^\circ }\), cạnh bên\(A{A^\prime } = a\sqrt 2 \). Tính góc giữa hai đường thẳng\(A{B^\prime }\)và\(BC\).

Ngày 13/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Goc trong HHKG 11, Trac nghiem goc giua hai duong thang

Câu hỏi: Cho hình lăng trụ đứng\(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\)có đáy\(ABC\)là tam giác cân \(AB = AC = a\), \(\widehat {BAC} = {120^\circ }\), cạnh bên\(A{A^\prime } = a\sqrt 2 \). Tính góc giữa hai đường thẳng\(A{B^\prime }\)và\(BC\). A. \({90^\circ }\). B. \({30^\circ }\). C. \({45^\circ }\). D. \({60^\circ }\). GY: Ta có:\(B{C^2} = … [Đọc thêm...] về

Cho hình lăng trụ đứng\(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\)có đáy\(ABC\)là tam giác cân \(AB = AC = a\), \(\widehat {BAC} = {120^\circ }\), cạnh bên\(A{A^\prime } = a\sqrt 2 \). Tính góc giữa hai đường thẳng\(A{B^\prime }\)và\(BC\).

Cho hình chóp\(S.ABCD\)có đáy là hình thoi cạnh\(AB = a\)và\(\mathop {ABC}\limits^\langle = {60^0}\). Hình chiếu vuông góc\(H\)của đỉnh\(S\)trên mặt phẳng đáy là trung điểm của cạnh\(AB\), góc giữa đường thẳng\(SC\)và mặt phẳng đáy bằng\({60^\circ }\). Tính cosin góc giữa hai đường thẳng\(SB\)và\(AC\)

Ngày 13/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Goc trong HHKG 11, Trac nghiem goc giua hai duong thang

Câu hỏi: Cho hình chóp\(S.ABCD\)có đáy là hình thoi cạnh\(AB = a\)và\(\mathop {ABC}\limits^\langle = {60^0}\). Hình chiếu vuông góc\(H\)của đỉnh\(S\)trên mặt phẳng đáy là trung điểm của cạnh\(AB\), góc giữa đường thẳng\(SC\)và mặt phẳng đáy bằng\({60^\circ }\). Tính cosin góc giữa hai đường thẳng\(SB\)và\(AC\) A. \(\frac{{ - 2}}{{\sqrt 5 }}\). B. \(\frac{1}{{2\sqrt … [Đọc thêm...] về

Cho hình chóp\(S.ABCD\)có đáy là hình thoi cạnh\(AB = a\)và\(\mathop {ABC}\limits^\langle = {60^0}\). Hình chiếu vuông góc\(H\)của đỉnh\(S\)trên mặt phẳng đáy là trung điểm của cạnh\(AB\), góc giữa đường thẳng\(SC\)và mặt phẳng đáy bằng\({60^\circ }\). Tính cosin góc giữa hai đường thẳng\(SB\)và\(AC\)

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.