• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

newshop.vn
  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Bài tập Hàm số / Đề: Chứng minh rằng:  $ – arctanx + arctan\frac{{1 + x}}{{1 – x}} = \frac{\pi }{4}$ với $\forall x \in ( – \infty ;1)$

Đề: Chứng minh rằng:  $ – arctanx + arctan\frac{{1 + x}}{{1 – x}} = \frac{\pi }{4}$ với $\forall x \in ( – \infty ;1)$

Đăng ngày: 04/03/2020 Biên tâp: admin Để lại bình luận Thuộc chủ đề:Bài tập Hàm số

ham so
Đề bài: Chứng minh rằng:  $ – arctanx + arctan\frac{{1 + x}}{{1 – x}} = \frac{\pi }{4}$ với $\forall x \in ( – \infty ;1)$

Lời giải

Xét hàm $f(x) =  – {\rm{ar}}ctan + {\rm{ar}}ctan\frac{{1 + x}}{{1 – x}}$ trong  khoảng $\left( { – \infty ;1} \right)$, ta có:
$\begin{array}{l}
f'(x) = – \frac{1}{{1 + {x^2}}} + \frac{1}{{1 + {{\left( {\frac{{1 + x}}{{1 – x}}} \right)}^2}}}.\left( {\frac{{1 + x}}{{1 – x}}} \right)
 = – \frac{1}{{1 + {x^2}}} + \frac{{{{(1 – x)}^2}}}{{2{{(1 + x)}^2}}}.\frac{2}{{{{\left( {1 – x} \right)}^2}}} = 0
\end{array}$
$ \Rightarrow f(x) = C,    \forall x \in \left( { – \infty ;1} \right)$.

Mặt khác,     $f(0) = – {\rm{ar}}ctan0 + {\rm{ar}}ctan1 = \pi /4$
Vậy $f(x) = \pi /4,\forall x \in \left( { – \infty ;1} \right)$

Tag với:Hàm số liên tục

Bài liên quan:

  • Đề: Chứng minh rằng phương trình:   $ 5x^4+40x^3+105x^2+100x+24 = 0 $ có bốn nghiệm âm phân biệt.
  • Đề: Chứng minh rằng phương trình $4x^{4}+2x^{2}-x-3=0$ có ít nhất hai nghiệm phân biệt trên khoảng $(-1,1)$
  • Đề: Chứng minh rằng phương trình $x^{3}+3x^{2}+5x-1=0$ có ít nhất một nghiệm trên khoảng $(0,1)$
  • Đề: Vì sao không thể xác định được $f(0)$ đối với hàm số:$f(x)=\frac{|x|}{x} (x\neq 0)$  để được hàm số $f(x)$ xác định và liên tục trên toàn bộ $R$.
  • Đề: Cho $f,g$ liên tục trên $[a,b]$ và $g(x_{0})\neq 0,x_{0}\in [a,b]$Chứng minh rằng:Nếu: $\begin{cases} 0
  • Đề: Chứng minh rằng nếu hàm số \(f(x)\) xác định và liên tục trên \([a;b]\) thì với các điểm \(x_{1},x_{2},…,x_{n}\) bất kì thuộc \([a;b]\) đều có một số \(c\in [a;b]\) sao cho \(f(c)=\frac{1}{n}[f(x_{1})+f(x_{2})+…+f(x_{n})]\).
  • Đề: Chứng tỏ rằng hàm số sau liên tục trên $R$:   $f(x) = \begin{cases}x \cos \frac{1}{x^2}  khi  x \neq  0  \\ 0  khi  x = 0 \end{cases} $
  • Đề: Xét tính liên tục của hàm số sau trên toàn trục số:  $f(x) = \begin{cases}x^2+x  khi  x
  • Đề: Xét dấu hàm số: $f(x) = 2 + \cos x – 2 \tan \frac{x}{2} $ trên $ (0,\pi )$
  • Tự học Bài Hàm số liên tục – Toán 11

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2021) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.