• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Trắc nghiệm Phép toán với số phức / Đề bài: Tìm S là tổng phần thực và phần ảo của số phức \(z = \left( {1 + 2i} \right)\left( {3 – i} \right).\)  

Đề bài: Tìm S là tổng phần thực và phần ảo của số phức \(z = \left( {1 + 2i} \right)\left( {3 – i} \right).\)  

01/06/2019 by admin Để lại bình luận Thuộc chủ đề:Trắc nghiệm Phép toán với số phức Tag với:Trắc nghiệm số phức thông hiểu


Câu hỏi:

Tìm S là tổng phần thực và phần ảo của số phức \(z = \left( {1 + 2i} \right)\left( {3 – i} \right).\)  

  • A. S=6.
  • B. S=10.
  • C. S=5. 
  • D. S=0.

Đáp án đúng: B

Ta có \(z = \left( {1 + 2i} \right)\left( {3 – i} \right) = 3 – i + 6i – 2{i^2} = 5 + 5i.\) 

Suy ra tổng phần thực và phần ảo của z bằng 10.

Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Bài liên quan:

  • Đề bài: Cho hai số phức \({z_1},{z_2}\) là các nghiệm của phương trình \({z^2} + 4{\rm{z}} + 13 = 0.\) Tính mô đun của số phức \({\rm{w}} = \left( {{z_1} + {z_2}} \right)i + {z_1}{z_2}.\)
  • Đề bài: Gọi \({z_1};{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\). Tính \(\left| {{z_1}} \right| + \left| {{z_2}} \right|.\)
  • Đề bài: Giải phương trình \(\left( {iz – 1} \right)\left( {z + 3i} \right)\left( {\overline z  – 2 + 3i} \right) = 0\) trên tập hợp số phức.
  • Đề bài: Gọi A, B là hai điểm biểu diễn nghiệm số phức của phương trình \({z^2} + 2z + 10 = 0\). Tính độ dài đoạn thẳng AB.
  • Đề bài: Kí hiệu \(z_0\) là nghiệm phức có phần ảo dương của phương trình Trên mặt phẳng toạ độ, điểm nào dưới đây là điểm biểu diễn số phức 
  • Đề bài: Gọi \({z_1}\) và \({z_2}\) là các nghiệm của phương trình \({z^2} – 2{\rm{z + 5 = 0}}\) trên tập số phức. Tính \(P = z_1^4 + z_2^4\) 
  • Đề bài: Tìm tập nghiệm S của phương trình \({z^4} + 2{z^2} – 3 = 0\) trên tập số phức.
  • Đề bài: Gọi \({z_1},{z_2},{z_3},{z_4}\) là bốn nghiệm phức của phương trình \({z^4} – 2{z^2} – 8 = 0.\) Trên mặt phẳng tọa độ, gọi A, B, C, D lần lượt là bốn điểm biểu diễn bốn nghiệm \({z_1},{z_2},{z_3},{z_4}\) đó. Tính giá trị của P=OA+OB+OC+OD, trong đó O là gốc tọa độ. 
  • Đề bài: Cho phương trình \({z^2} – 2x + 2 = 0.\) Mệnh đề nào sau đây là sai?
  • Đề bài: Gọi \(z_1,z_2\) là các nghiệm phức của phương trình \({z^2} + 2x + 5 = 0\). Tính \(M = \left| {z_1^2} \right| + \left| {z_2^2} \right|.\) 

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2020) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.