• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề: $1.$ Khảo sát sự biến thiên và vẽ đồ thị hàm số: $y = 3x – 4x^3$Từ đó suy ra đồ thị của hàm số: $y = |x|\left( {3 – 4{x^2}} \right)$$2.$ Viết phương trình tiếp tuyến với ($C$) đi qua $A(1;3).$

Đăng ngày: 05/03/2020 Biên tập: admin Thuộc chủ đề:Bài tập Hàm số Tag với:Ứng dụng hàm số vào giải toán

adsense

ham so
Đề bài: $1.$ Khảo sát sự biến thiên và vẽ đồ thị hàm số: $y = 3x – 4x^3$Từ đó suy ra đồ thị của hàm số: $y = |x|\left( {3 – 4{x^2}} \right)$$2.$ Viết phương trình tiếp tuyến với ($C$) đi qua $A(1;3).$

Lời giải

adsense

     
  1. Khảo sát , đồ thị (xin dành cho bạn đọc). 
  
      Đề: $1.$ Khảo sát sự biến thiên và vẽ đồ thị hàm số: $y = 3x - 4x^3$Từ đó suy ra đồ thị của hàm số: $y = |x|left( {3 - 4{x^2}} right)$$2.$ Viết phương trình tiếp tuyến với ($C$) đi qua $A(1;3).$ 1

Từ đồ thị hàm số: $y = 3x – 4{x^3}$ta suy ra đồ thị hàm số $y = |x|\left( {3 – 4{x^2}} \right)$
Hàm số chẵn, đồ thị nhận trục tung $Oy$ làm trục đối xứng. Khi $x \ge 0$, $y = 3x – 4{x^3}$trùng với đồ thị đã cho ở trên.
$2.$ Đường thẳng đi qua $A(1;3)$ hệ số góc $k$ có phương trình: $y = k(x – 1) + 3$. Đường thẳng này sẽ là một tiếp tuyến của đồ thị hàm số $y = 3x – 4{x^3}$khi và chỉ khi hệ sau có nghiệm:
$\left\{ \begin{array}{l}
k(x – 1) + 3 = 3x – 4{x^3}\\
k = 3 – 12{x^2}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = \frac{3}{2}
\end{array} \right.$
+ Với $x = 0  \Rightarrow k = 3$ ta có tiếp tuyến $y = 3x$
+ Với $x = 3/2  \Rightarrow k = -24$ ta có tiếp tuyến $y = -24x + 27.$

Thuộc chủ đề:Bài tập Hàm số Tag với:Ứng dụng hàm số vào giải toán

Bài liên quan:

  1. Đề: $f(x) = \cos x + \sqrt{2-\cos ^2 x .} $  Tìm $Max  f(x) , Min  f(x).$
  2. Đề: Chứng minh rằng nếu $0
  3. Đề: Cho hàm số: $y = f(x) = \frac{x^2 – 2mx + m + 2}{x – m}$$1.$ Với giá trị nào của $m$ thì hàm số đồng biến với mọi $x > 1.$ $2.$ Khảo sát sự biến thiên và vẽ đồ thị hàm số ứng với $m = 1.$ $3.$ Biện luận theo $a$ số nghiệm của phương trình: $\frac{{x^2 – 2|x| + 3}}{|x| – 1} = a$
  4. Đề: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $y=x+\sqrt{4-x^2}$ với $-2\leq x\leq 2$.
  5. Đề: Chứng minh rằng nếu $n$ là một số tự nhiên chẵn, và $a$ là một số lớn hơn, thì phương trình$( {n + 1}){x^{n + 2}} – 3( {n + 2} ){x^{n + 1}} + {a^{n + 2}} = 0$ không có nghiệm
  6. Đề: Cho $p, q$ là các số tự nhiên lớn hơn 1. Tìm giá trị lớn nhất của hàm số                       $y=cos^pxsin^qx  (0\leq x\leq \frac{\pi}{2} )$
  7. Đề: Giải hệ phương trình: $\begin{cases}x^3-3x^2+6x-6=y \\ y^3-3y^2+6y-6=z  \\  z^3-3z^2+6z-6=x\end{cases}         (I)$
  8. Đề: Cho $f(x)=\sqrt{1+2 \cos x }+\sqrt{1+2 \sin x } . $  Tìm $max  f(x) , min  f(x). $
  9. Đề: Chứng minh rằng:$\frac{1}{1+(n+1)^{2}}
  10. Đề: Chứng minh rằng : $\forall x \in \left( {0,\frac{\pi }{2}} \right)$ ta có ${2^{2\sin x}} + {2^{tanx}} > {2^{\frac{{3x}}{2} + 1}}$
  11. Đề:  Giải hệ bất phương trình: $\left\{ \begin{array}{l}{x^2} + 5x + 4 < 0\\{x^3} + 3{x^2} - 9x - 10 > 0\end{array} \right.$
  12. Đề: Tìm giá trị lớn nhất và nhỏ nhất của hàm số:                    $y = {5^{x – 1}} + {5^{ – x – 1}}$
  13. Đề: Giải hệ bất phương trình: $\left\{ \begin{array}{l}\log _2^2x – {\log _2}x^2 < 0\\\frac{x^3}{3} - 3x^2 + 5x + 9 > 0\end{array} \right.$
  14. Đề: Cho $y=\sqrt{\cos ^2 x -2 \cos x +5} + \sqrt{\cos ^2 x – 4 \cos x +8.} $  Tìm $max  y ,  min  y.$
  15. Đề: Chứng minh rằng với $\forall x>0$ luôn có $\ln (x+1)

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.