• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Đề: Trong không gian với hệ trục tọa độ Oxyz. Cho mặt phẳng \(\left( \alpha  \right):x + y – z – 5 = 0,\) mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2{\rm{x}} – 2y + 2{\rm{z}} – 1 = 0.\) Viết phương trình mặt phẳng \(\left( \gamma  \right)\) song song với mặt phẳng \(\left( \alpha  \right)\) và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính bằng 1 

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Trong không gian với hệ trục tọa độ Oxyz. Cho mặt phẳng \(\left( \alpha  \right):x + y - z - 5 = 0,\) mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x}} - 2y + 2{\rm{z}} - 1 = 0.\) Viết phương trình mặt phẳng \(\left( \gamma  \right)\) song song với mặt phẳng \(\left( \alpha  \right)\) và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán … [Đọc thêm...] vềĐề: Trong không gian với hệ trục tọa độ Oxyz. Cho mặt phẳng \(\left( \alpha  \right):x + y – z – 5 = 0,\) mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2{\rm{x}} – 2y + 2{\rm{z}} – 1 = 0.\) Viết phương trình mặt phẳng \(\left( \gamma  \right)\) song song với mặt phẳng \(\left( \alpha  \right)\) và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính bằng 1 

Đề: Trong không gian với hệ trục tọa độ Oxyz. Viết phương trình mặt phẳng đi qua điểm \(M\left( { – 1;2;0} \right),\) nhận \(\overrightarrow n  = \left( {0; – 1;3} \right)\) làm một vectơ pháp tuyến.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Trong không gian với hệ trục tọa độ Oxyz. Viết phương trình mặt phẳng đi qua điểm \(M\left( { - 1;2;0} \right),\) nhận \(\overrightarrow n  = \left( {0; - 1;3} \right)\) làm một vectơ pháp tuyến. A. \(y - 3z - 2 = 0.\)     B. \(x + 2y + 2 = 0.\) C. \(y - 3{\rm{z}} + 2 = 0.\) D. … [Đọc thêm...] vềĐề: Trong không gian với hệ trục tọa độ Oxyz. Viết phương trình mặt phẳng đi qua điểm \(M\left( { – 1;2;0} \right),\) nhận \(\overrightarrow n  = \left( {0; – 1;3} \right)\) làm một vectơ pháp tuyến.

Đề: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\frac{{x + 1}}{2} = \frac{{y – 1}}{{ – 1}} = \frac{{z – 2}}{3}\), \({d_2}:\frac{x}{{ – 1}} = \frac{{y + 2}}{2} = \frac{{z – 3}}{{ – 3}}\). Mặt phẳng (P) chứa \({d_1}\) và song song với \({d_2}\). Khoảng cách từ điểm \(M\left( {1;1;1} \right)\) đến mặt phẳng là:

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\frac{{x + 1}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 2}}{3}\), \({d_2}:\frac{x}{{ - 1}} = \frac{{y + 2}}{2} = \frac{{z - 3}}{{ - 3}}\). Mặt phẳng (P) chứa \({d_1}\) và song song với \({d_2}\). Khoảng cách từ điểm \(M\left( {1;1;1} \right)\) đến mặt phẳng là: … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\frac{{x + 1}}{2} = \frac{{y – 1}}{{ – 1}} = \frac{{z – 2}}{3}\), \({d_2}:\frac{x}{{ – 1}} = \frac{{y + 2}}{2} = \frac{{z – 3}}{{ – 3}}\). Mặt phẳng (P) chứa \({d_1}\) và song song với \({d_2}\). Khoảng cách từ điểm \(M\left( {1;1;1} \right)\) đến mặt phẳng là:

Đề: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) cắt ba trục Ox, Oy, Oz lần lượt tại A, B, C; trực tâm của tam giác ABC là \(H\left( {1;2;3} \right).\) Viết phương trình mặt phẳng (P).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) cắt ba trục Ox, Oy, Oz lần lượt tại A, B, C; trực tâm của tam giác ABC là \(H\left( {1;2;3} \right).\) Viết phương trình mặt phẳng (P). A. \(x + 2y + 3{\rm{z}} - 14 = 0.\) B. \(x + 2y + 3{\rm{z}} + 14 = 0.\) C. \(\frac{x}{1} + \frac{y}{2} + … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) cắt ba trục Ox, Oy, Oz lần lượt tại A, B, C; trực tâm của tam giác ABC là \(H\left( {1;2;3} \right).\) Viết phương trình mặt phẳng (P).

Đề: Trong không gian Oxyz, cho 3 điểm \(A\left( {2; – 1;3} \right),B\left( {4;0;1} \right),C\left( { – 10;5;3} \right).\) Vectơ nào sau đây là vectơ pháp tuyến của mặt phẳng (ABC)?

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Trong không gian Oxyz, cho 3 điểm \(A\left( {2; - 1;3} \right),B\left( {4;0;1} \right),C\left( { - 10;5;3} \right).\) Vectơ nào sau đây là vectơ pháp tuyến của mặt phẳng (ABC)? A. \(\overrightarrow {{n_1}}  = \left( {1;2;0} \right).\) B. \(\overrightarrow {{n_2}}  = \left( {1;2;2} \right).\) C. … [Đọc thêm...] vềĐề: Trong không gian Oxyz, cho 3 điểm \(A\left( {2; – 1;3} \right),B\left( {4;0;1} \right),C\left( { – 10;5;3} \right).\) Vectơ nào sau đây là vectơ pháp tuyến của mặt phẳng (ABC)?

Đề: + Ta có \(\frac{{{T_{\max }}}}{{{T_{\min }}}} = \frac{{3 – 2\cos {\alpha _0}}}{{\cos {\alpha _0}}}\)

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== + Ta có \(\frac{{{T_{\max }}}}{{{T_{\min }}}} = \frac{{3 - 2\cos {\alpha _0}}}{{\cos {\alpha _0}}}\) + Dao động của con lắc đơn là dao động bé, áp dụng công thức gần đúng \(\cos {\alpha _0} \approx 1 - \frac{{\alpha _0^2}}{2}\), ta thu được \(\frac{{{T_{\max }}}}{{{T_{\min }}}} = \frac{{3 - 2\cos {\alpha _0}}}{{\cos {\alpha _0}}} = 1,02 \Rightarrow {\alpha ^0} = … [Đọc thêm...] vềĐề: + Ta có \(\frac{{{T_{\max }}}}{{{T_{\min }}}} = \frac{{3 – 2\cos {\alpha _0}}}{{\cos {\alpha _0}}}\)

Đề: Phương trình có dạng ntoongr quát: \(\alpha  = {\alpha _{\bf{0}}}{\bf{cos}}(\omega {\bf{t}}{\rm{ }} + \varphi )\) = 0,1cos(10t + 0,79)

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Phương trình có dạng ntoongr quát: \(\alpha  = {\alpha _{\bf{0}}}{\bf{cos}}(\omega {\bf{t}}{\rm{ }} + \varphi )\) = 0,1cos(10t + 0,79) Chọn đáp án B Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{4}\) và mặt phẳng \(\left( P \right):mx + 10y + nz - 11 = 0\). Biết rằng mặt … [Đọc thêm...] vềĐề: Phương trình có dạng ntoongr quát: \(\alpha  = {\alpha _{\bf{0}}}{\bf{cos}}(\omega {\bf{t}}{\rm{ }} + \varphi )\) = 0,1cos(10t + 0,79)

Đề: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\frac{{x – 2}}{1} = \frac{{y – 1}}{{ – 1}} = \frac{z}{2}\) và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2 – t}\\{y = 3}\\{z = t}\end{array}} \right.\). Tìm phương trình của mặt phẳng cách đều hai đường thẳng \({d_1},{d_2}\)

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\) và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2 - t}\\{y = 3}\\{z = t}\end{array}} \right.\). Tìm phương trình của mặt phẳng cách đều hai đường thẳng \({d_1},{d_2}\) A. \(x + 3y + z - 8 = … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\frac{{x – 2}}{1} = \frac{{y – 1}}{{ – 1}} = \frac{z}{2}\) và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2 – t}\\{y = 3}\\{z = t}\end{array}} \right.\). Tìm phương trình của mặt phẳng cách đều hai đường thẳng \({d_1},{d_2}\)

Đề: Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( {1;2;0} \right)\) và đường thẳng \(d:\frac{{x + 1}}{2} = \frac{y}{1} = \frac{{z – 1}}{{ – 1}}\). Tìm phương trình của mặt phẳng (P) đi qua A và vuông góc với d.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( {1;2;0} \right)\) và đường thẳng \(d:\frac{{x + 1}}{2} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}\). Tìm phương trình của mặt phẳng (P) đi qua A và vuông góc với d. A. \(x + 2y - z + 4 = 0\) B. \(2x + y - z - 4 = 0\) C. \(2x + y … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( {1;2;0} \right)\) và đường thẳng \(d:\frac{{x + 1}}{2} = \frac{y}{1} = \frac{{z – 1}}{{ – 1}}\). Tìm phương trình của mặt phẳng (P) đi qua A và vuông góc với d.

Đề: Trong không gian với hệ tọa độ Oxyz. Viết phương trình mặt phẳng (P) đi qua điểm \(M\left( {1;2;3} \right)\) và cắt cấc trục Ox, Oy, Oz lần lượt tại ba điểm A, B, C khác với gốc tọa độ O sao cho biểu thức \(T = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\) có giá trị nhỏ nhất.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz. Viết phương trình mặt phẳng (P) đi qua điểm \(M\left( {1;2;3} \right)\) và cắt cấc trục Ox, Oy, Oz lần lượt tại ba điểm A, B, C khác với gốc tọa độ O sao cho biểu thức \(T = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\) có giá trị nhỏ nhất. A. \(\left( P … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz. Viết phương trình mặt phẳng (P) đi qua điểm \(M\left( {1;2;3} \right)\) và cắt cấc trục Ox, Oy, Oz lần lượt tại ba điểm A, B, C khác với gốc tọa độ O sao cho biểu thức \(T = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\) có giá trị nhỏ nhất.

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 1570
  • Trang 1571
  • Trang 1572
  • Trang 1573
  • Trang 1574
  • Interim pages omitted …
  • Trang 1754
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.