• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Đề: Mặt phẳng song song với hai đường thẳng \({\Delta _1}:\frac{{x – 2}}{2} = \frac{{y + 1}}{{ – 3}} = \frac{z}{4}\) và \({\Delta _2}:\frac{{x – 2}}{1} = \frac{{y – 3}}{2} = \frac{{z – 1}}{{ – 1}}\) có vectơ pháp tuyến là:

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Mặt phẳng song song với hai đường thẳng \({\Delta _1}:\frac{{x - 2}}{2} = \frac{{y + 1}}{{ - 3}} = \frac{z}{4}\) và \({\Delta _2}:\frac{{x - 2}}{1} = \frac{{y - 3}}{2} = \frac{{z - 1}}{{ - 1}}\) có vectơ pháp tuyến là: A. \(\overrightarrow n  = (5; - 6;7)\) B. \(\overrightarrow n  = ( - 5;6; - 7)\)    … [Đọc thêm...] vềĐề: Mặt phẳng song song với hai đường thẳng \({\Delta _1}:\frac{{x – 2}}{2} = \frac{{y + 1}}{{ – 3}} = \frac{z}{4}\) và \({\Delta _2}:\frac{{x – 2}}{1} = \frac{{y – 3}}{2} = \frac{{z – 1}}{{ – 1}}\) có vectơ pháp tuyến là:

Đề: Trong không gian với hệ trục tọa độ Oxyz, cho ba đường thẳng\({d_1}:\left\{ \begin{array}{l}x = 1\\y =  – 1\\z = {t_1}\end{array} \right.,{d_2}:\left\{ \begin{array}{l}x = {t_2}\\y =  – 1\\z = 0\end{array} \right.,{d_3}:\left\{ \begin{array}{l}x = 1\\y = {t_3}\\z = 0\end{array} \right..\) Viết phương trình mặt phẳng đi qua M(1;2;3) và cắt ba đường thẳng \({d_1},{d_2},{d_3}\)lần lượt tại A, B, C sao cho M là trực tâm tam giác ABC.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Trong không gian với hệ trục tọa độ Oxyz, cho ba đường thẳng\({d_1}:\left\{ \begin{array}{l}x = 1\\y =  - 1\\z = {t_1}\end{array} \right.,{d_2}:\left\{ \begin{array}{l}x = {t_2}\\y =  - 1\\z = 0\end{array} \right.,{d_3}:\left\{ \begin{array}{l}x = 1\\y = {t_3}\\z = 0\end{array} \right..\) Viết phương trình mặt phẳng đi qua M(1;2;3) và cắt ba đường thẳng … [Đọc thêm...] vềĐề: Trong không gian với hệ trục tọa độ Oxyz, cho ba đường thẳng\({d_1}:\left\{ \begin{array}{l}x = 1\\y =  – 1\\z = {t_1}\end{array} \right.,{d_2}:\left\{ \begin{array}{l}x = {t_2}\\y =  – 1\\z = 0\end{array} \right.,{d_3}:\left\{ \begin{array}{l}x = 1\\y = {t_3}\\z = 0\end{array} \right..\) Viết phương trình mặt phẳng đi qua M(1;2;3) và cắt ba đường thẳng \({d_1},{d_2},{d_3}\)lần lượt tại A, B, C sao cho M là trực tâm tam giác ABC.

Đề: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x – 4y – 6z – 2 = 0\). Viết phương trình mặt phẳng \(\left( \alpha  \right)\) chứa trục Oy và cắt mặt cầu (S) theo thiết diện là một đường tròn có chu vi bằng\(\,8\pi .\)

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x - 4y - 6z - 2 = 0\). Viết phương trình mặt phẳng \(\left( \alpha  \right)\) chứa trục Oy và cắt mặt cầu (S) theo thiết diện là một đường tròn có chu vi bằng\(\,8\pi .\) A. \(\,3x + z = 0\) B. \(3x + z + 2 = … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x – 4y – 6z – 2 = 0\). Viết phương trình mặt phẳng \(\left( \alpha  \right)\) chứa trục Oy và cắt mặt cầu (S) theo thiết diện là một đường tròn có chu vi bằng\(\,8\pi .\)

Đề: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;3; – 4} \right)\) và \(B\left( { – 1;2;2} \right)\). Viết phương trình mặt phẳng trung trực \(\left( \alpha  \right)\) của đoạn thẳng AB.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;3; - 4} \right)\) và \(B\left( { - 1;2;2} \right)\). Viết phương trình mặt phẳng trung trực \(\left( \alpha  \right)\) của đoạn thẳng AB. A. \(\left( \alpha  \right):4x - 2y - 12z - 7 = 0\) B. \(\left( \alpha  \right):4x + 2y + 12z + 7 = … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;3; – 4} \right)\) và \(B\left( { – 1;2;2} \right)\). Viết phương trình mặt phẳng trung trực \(\left( \alpha  \right)\) của đoạn thẳng AB.

Đề: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x – 4y – 4z = 0\). Viết phương trình mặt phẳng \(\left( \alpha  \right)\) tiếp xúc với \(\left( S \right)\) tại điểm \(A\left( {3;4;3} \right)\).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x - 4y - 4z = 0\). Viết phương trình mặt phẳng \(\left( \alpha  \right)\) tiếp xúc với \(\left( S \right)\) tại điểm \(A\left( {3;4;3} \right)\). A. \(\left( \alpha  \right):2x + 4y + z - 25 = 0\) B. \(\left( \alpha  … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x – 4y – 4z = 0\). Viết phương trình mặt phẳng \(\left( \alpha  \right)\) tiếp xúc với \(\left( S \right)\) tại điểm \(A\left( {3;4;3} \right)\).

Đề: Trong không gian với hệ tọa độ (Oxyz), mặt phẳng cắt Ox, Oy, Oz lần lượt tại điểm \(A\left( {1;0;0} \right),B\left( {0; – 2;0} \right),C\left( {0;0;3} \right)\) không đi qua điểm nào dưới đây?

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Trong không gian với hệ tọa độ (Oxyz), mặt phẳng cắt Ox, Oy, Oz lần lượt tại điểm \(A\left( {1;0;0} \right),B\left( {0; - 2;0} \right),C\left( {0;0;3} \right)\) không đi qua điểm nào dưới đây? A. \(P\left( {\frac{1}{6}; - 1;1} \right)\) B. \(Q\left( {1;2;3} \right)\) C. \(M\left( … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ (Oxyz), mặt phẳng cắt Ox, Oy, Oz lần lượt tại điểm \(A\left( {1;0;0} \right),B\left( {0; – 2;0} \right),C\left( {0;0;3} \right)\) không đi qua điểm nào dưới đây?

Đề: Trong không gian với hệ tọa độ (Oxyz), cho điểm \(S\left( {2;4;6} \right)\). Gọi A, B, C lần lượt là 3 điểm thuộc Ox, Oy, Oz sao cho SA, SB, SC đôi một vuông góc với nhau. Hỏi vectơ nào dưới đây là một véc tơ pháp tuyến của mặt phẳng (ABC)?

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Trong không gian với hệ tọa độ (Oxyz), cho điểm \(S\left( {2;4;6} \right)\). Gọi A, B, C lần lượt là 3 điểm thuộc Ox, Oy, Oz sao cho SA, SB, SC đôi một vuông góc với nhau. Hỏi vectơ nào dưới đây là một véc tơ pháp tuyến của mặt phẳng (ABC)? A. \(\overrightarrow n  = \left( {1;2;3} \right)\) B. \(\overrightarrow n  … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ (Oxyz), cho điểm \(S\left( {2;4;6} \right)\). Gọi A, B, C lần lượt là 3 điểm thuộc Ox, Oy, Oz sao cho SA, SB, SC đôi một vuông góc với nhau. Hỏi vectơ nào dưới đây là một véc tơ pháp tuyến của mặt phẳng (ABC)?

Đề: \(\begin{array}{l} \left( { – \frac{3}{7} + \frac{3}{5}} \right):\frac{{20}}{{21}} + \left( { – \frac{4}{7} + \frac{2}{5}} \right):\frac{{20}}{{21}}\\  = \frac{6}{{35}}:\frac{{20}}{{21}} + \frac{{ – 6}}{{35}}:\frac{{20}}{{21}}\\  = 0 \end{array}\)

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== \(\begin{array}{l} \left( { - \frac{3}{7} + \frac{3}{5}} \right):\frac{{20}}{{21}} + \left( { - \frac{4}{7} + \frac{2}{5}} \right):\frac{{20}}{{21}}\\  = \frac{6}{{35}}:\frac{{20}}{{21}} + \frac{{ - 6}}{{35}}:\frac{{20}}{{21}}\\  = 0 \end{array}\) Câu hỏi: Trong không gian với hệ trục tọa độ Oxyz, cho 3 điểm \(M\left( {1;0;0} \right),N\left( {0;0;3} … [Đọc thêm...] vềĐề: \(\begin{array}{l} \left( { – \frac{3}{7} + \frac{3}{5}} \right):\frac{{20}}{{21}} + \left( { – \frac{4}{7} + \frac{2}{5}} \right):\frac{{20}}{{21}}\\  = \frac{6}{{35}}:\frac{{20}}{{21}} + \frac{{ – 6}}{{35}}:\frac{{20}}{{21}}\\  = 0 \end{array}\)

Đề: Trong không gian với hệ trục tọa độ Oxyz, Cho \(C\left( {2;1;1} \right),D\left( {3;1;0} \right)\). \(A\left( {1;0;0} \right),B\left( {0;0;1} \right)\). Hỏi có bao nhiêu mặt phẳng trong không gian cách đều cả bốn điểm đã cho?

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Trong không gian với hệ trục tọa độ Oxyz, Cho \(C\left( {2;1;1} \right),D\left( {3;1;0} \right)\). \(A\left( {1;0;0} \right),B\left( {0;0;1} \right)\). Hỏi có bao nhiêu mặt phẳng trong không gian cách đều cả bốn điểm đã cho? A. Vô số B. 7 C. 9 D. 5 Hãy chọn trả … [Đọc thêm...] vềĐề: Trong không gian với hệ trục tọa độ Oxyz, Cho \(C\left( {2;1;1} \right),D\left( {3;1;0} \right)\). \(A\left( {1;0;0} \right),B\left( {0;0;1} \right)\). Hỏi có bao nhiêu mặt phẳng trong không gian cách đều cả bốn điểm đã cho?

Đề: Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng \(\left( \alpha  \right)\) đi qua điểm \(M\left( {5;4;3} \right)\) và chắn trên các tia Ox, Oy, Oz các đoạn bằng nhau có phương trình là:

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat phang

==== Câu hỏi: Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng \(\left( \alpha  \right)\) đi qua điểm \(M\left( {5;4;3} \right)\) và chắn trên các tia Ox, Oy, Oz các đoạn bằng nhau có phương trình là: A. \(x - y + z - 4 = 0\) B. \(x + y + z - 12 = 0\) C. \(5x + 4y + 3z - 50 = 0\) D. \(x … [Đọc thêm...] vềĐề: Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng \(\left( \alpha  \right)\) đi qua điểm \(M\left( {5;4;3} \right)\) và chắn trên các tia Ox, Oy, Oz các đoạn bằng nhau có phương trình là:

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 1569
  • Trang 1570
  • Trang 1571
  • Trang 1572
  • Trang 1573
  • Interim pages omitted …
  • Trang 1754
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.