• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Đề: Có bao nhiêu mặt phẳng song song với mặt phẳng \(\left( \alpha  \right):x + y + z = 0\) đồng thời tiếp xúc với mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2{\rm{x}} – 2y – 2{\rm{z}} = 0?\)

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Có bao nhiêu mặt phẳng song song với mặt phẳng \(\left( \alpha  \right):x + y + z = 0\) đồng thời tiếp xúc với mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x}} - 2y - 2{\rm{z}} = 0?\) A. 1 B. 0 C. Vô số. D. 2 Hãy chọn trả lời đúng trước khi xem đáp án … [Đọc thêm...] vềĐề: Có bao nhiêu mặt phẳng song song với mặt phẳng \(\left( \alpha  \right):x + y + z = 0\) đồng thời tiếp xúc với mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2{\rm{x}} – 2y – 2{\rm{z}} = 0?\)

Đề: Cho mặt phẳng (P) và mặt cầu (S) có phương trình lần lượt là \(\left( P \right):2x + 2y + z – {3^2} + 4m – 5 = 0\), \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 2y – 2z – 6 = 0\). Tất cả các giá trị của m để (P) tiếp xúc với (S) là:

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Cho mặt phẳng (P) và mặt cầu (S) có phương trình lần lượt là \(\left( P \right):2x + 2y + z - {3^2} + 4m - 5 = 0\), \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 6 = 0\). Tất cả các giá trị của m để (P) tiếp xúc với (S) là: A. \(m =  - 1\) hoặc \(m = 5\) B. \(m =  - 1\) hoặc \(m =  - 5\)    … [Đọc thêm...] vềĐề: Cho mặt phẳng (P) và mặt cầu (S) có phương trình lần lượt là \(\left( P \right):2x + 2y + z – {3^2} + 4m – 5 = 0\), \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 2y – 2z – 6 = 0\). Tất cả các giá trị của m để (P) tiếp xúc với (S) là:

Đề: Trong không gian với hệ tọa độ Oxyz, lập phương trình mặt cầu (S) có tâm I(1;-2;1) và tiếp xúc với mặt phẳng \(\left( P \right):2x – y + 2z = 0.\)

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, lập phương trình mặt cầu (S) có tâm I(1;-2;1) và tiếp xúc với mặt phẳng \(\left( P \right):2x - y + 2z = 0.\) A. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 2\) B. \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, lập phương trình mặt cầu (S) có tâm I(1;-2;1) và tiếp xúc với mặt phẳng \(\left( P \right):2x – y + 2z = 0.\)

Đề: Trong không gian với hệ trục tọa độ Oxyz. Cho mặt phẳng \(\left( P \right):x + 2y – z – 1 = 0\) và ba điểm \(A\left( {1;1;0} \right),\,\,B\left( { – 1;0;1} \right),\,\,C\left( {0;2;1} \right).\) Viết phương trình mặt cầu có tâm thuộc mặt phẳng (P) và đi qua ba điểm A, B, C.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ trục tọa độ Oxyz. Cho mặt phẳng \(\left( P \right):x + 2y - z - 1 = 0\) và ba điểm \(A\left( {1;1;0} \right),\,\,B\left( { - 1;0;1} \right),\,\,C\left( {0;2;1} \right).\) Viết phương trình mặt cầu có tâm thuộc mặt phẳng (P) và đi qua ba điểm A, B, C. A. \({\left( {x + \frac{7}{6}} \right)^2} + {\left( {y + … [Đọc thêm...] vềĐề: Trong không gian với hệ trục tọa độ Oxyz. Cho mặt phẳng \(\left( P \right):x + 2y – z – 1 = 0\) và ba điểm \(A\left( {1;1;0} \right),\,\,B\left( { – 1;0;1} \right),\,\,C\left( {0;2;1} \right).\) Viết phương trình mặt cầu có tâm thuộc mặt phẳng (P) và đi qua ba điểm A, B, C.

Đề: Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng: \(\left( P \right):x + 2y – 2z – 2 = 0,\) \(\left( Q \right):x + 2y – 2z + 4 = 0\). Mặt cầu (S) có tâm thuộc trục Ox và tiếp xúc với hai mặt phẳng đã cho có phương trình là:

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng: \(\left( P \right):x + 2y - 2z - 2 = 0,\) \(\left( Q \right):x + 2y - 2z + 4 = 0\). Mặt cầu (S) có tâm thuộc trục Ox và tiếp xúc với hai mặt phẳng đã cho có phương trình là: A. \({\left( {x - 3} \right)^2} + {y^2} + {z^2} = 4\) B. … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng: \(\left( P \right):x + 2y – 2z – 2 = 0,\) \(\left( Q \right):x + 2y – 2z + 4 = 0\). Mặt cầu (S) có tâm thuộc trục Ox và tiếp xúc với hai mặt phẳng đã cho có phương trình là:

Đề: Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {2;0;0} \right),B\left( {0;4;0} \right)\), \(C\left( {0;0;6} \right)\) và \(D\left( {2;4;6} \right)\). Tập hợp các điểm M thỏa mãn \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} } \right| = 4\) là mặt cầu có phương trình:

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {2;0;0} \right),B\left( {0;4;0} \right)\), \(C\left( {0;0;6} \right)\) và \(D\left( {2;4;6} \right)\). Tập hợp các điểm M thỏa mãn \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} } \right| = 4\) là mặt cầu có phương … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {2;0;0} \right),B\left( {0;4;0} \right)\), \(C\left( {0;0;6} \right)\) và \(D\left( {2;4;6} \right)\). Tập hợp các điểm M thỏa mãn \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} } \right| = 4\) là mặt cầu có phương trình:

Đề: Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1;2; – 4} \right),B\left( {1; – 3;1} \right),C\left( {2;2;3} \right)\). Mặt cầu (S) đi qua ba điểm A, B, C và có tâm thuộc mặt phẳng (xOy) có bán kính là:

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1;2; - 4} \right),B\left( {1; - 3;1} \right),C\left( {2;2;3} \right)\). Mặt cầu (S) đi qua ba điểm A, B, C và có tâm thuộc mặt phẳng (xOy) có bán kính là: A. \(\sqrt {34} \) B. \(\sqrt {26} \) C. 34 D. … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1;2; – 4} \right),B\left( {1; – 3;1} \right),C\left( {2;2;3} \right)\). Mặt cầu (S) đi qua ba điểm A, B, C và có tâm thuộc mặt phẳng (xOy) có bán kính là:

Đề: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} – 6x + 2y + 1 = 0\). Tính tọa độ tâm I, bán kính R của mặt cầu (S).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} - 6x + 2y + 1 = 0\). Tính tọa độ tâm I, bán kính R của mặt cầu (S). A. \(\left\{ \begin{array}{l}I\left( {3; - 1;0} \right)\\R = 9\end{array} \right.\) B. \(\left\{ \begin{array}{l}I\left( {3; - 1;0} \right)\\R = … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} – 6x + 2y + 1 = 0\). Tính tọa độ tâm I, bán kính R của mặt cầu (S).

Đề:  Trong không gian tọa độ Oxyz, cho hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} + 4{\rm{x}} + 2y + z = 0,\)\(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} – 2{\rm{x}} – y – z = 0\) cắt nhau theo một đường tròn (C) và ba điểm \(A\left( {1;0;0} \right),\)\(B\left( {0;2;0} \right),C\left( {0;0;3} \right).\) Hỏi có tất cả bao nhiêu mặt cầu có tâm thuộc mặt phẳng chứa đường tròn (C) và tiếp xúc với ba đường thẳng AB, BC, AC?

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi:  Trong không gian tọa độ Oxyz, cho hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} + 4{\rm{x}} + 2y + z = 0,\)\(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} - 2{\rm{x}} - y - z = 0\) cắt nhau theo một đường tròn (C) và ba điểm \(A\left( {1;0;0} \right),\)\(B\left( {0;2;0} \right),C\left( {0;0;3} \right).\) Hỏi có tất cả bao nhiêu mặt cầu có … [Đọc thêm...] vềĐề:  Trong không gian tọa độ Oxyz, cho hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} + 4{\rm{x}} + 2y + z = 0,\)\(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} – 2{\rm{x}} – y – z = 0\) cắt nhau theo một đường tròn (C) và ba điểm \(A\left( {1;0;0} \right),\)\(B\left( {0;2;0} \right),C\left( {0;0;3} \right).\) Hỏi có tất cả bao nhiêu mặt cầu có tâm thuộc mặt phẳng chứa đường tròn (C) và tiếp xúc với ba đường thẳng AB, BC, AC?

Đề: Trong không gian độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x – 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 1} \right)^2} = 100\) và mặt phẳng \(\left( \alpha  \right):2{\rm{x}} – 2y – z + 9 = 0.\) Mặt phẳng \(\left( \alpha  \right)\) cắt mặt cầu (S) theo một đường tròn (C). Tính bán kính R của đường tròn (C).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 100\) và mặt phẳng \(\left( \alpha  \right):2{\rm{x}} - 2y - z + 9 = 0.\) Mặt phẳng \(\left( \alpha  \right)\) cắt mặt cầu (S) theo một đường tròn (C). Tính bán kính R của đường tròn (C). A. … [Đọc thêm...] vềĐề: Trong không gian độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x – 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 1} \right)^2} = 100\) và mặt phẳng \(\left( \alpha  \right):2{\rm{x}} – 2y – z + 9 = 0.\) Mặt phẳng \(\left( \alpha  \right)\) cắt mặt cầu (S) theo một đường tròn (C). Tính bán kính R của đường tròn (C).

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 1557
  • Trang 1558
  • Trang 1559
  • Trang 1560
  • Trang 1561
  • Interim pages omitted …
  • Trang 1754
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.