• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Bất đẳng thức - Bài tập tự luận / Đề bài: Tìm giá trị lớn nhất của hàm số :$f(x)=x+\sqrt{4-x^2}$ trên miền $-2\leq x\leq 2$.

Đề bài: Tìm giá trị lớn nhất của hàm số :$f(x)=x+\sqrt{4-x^2}$ trên miền $-2\leq x\leq 2$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Tìm giá trị lớn nhất của hàm số :$f(x)=x+\sqrt{4-x^2}$ trên miền $-2\leq x\leq 2$.

Bat dang thuc

Lời giải

Đề bài:
Tìm giá trị lớn nhất của hàm số :$f(x)=x+\sqrt{4-x^2}$ trên miền $-2\leq x\leq 2$.
Lời giải

Do $x\geq -2$ nên hiển nhiên ta có: $f(x)\geq -2$ với $\forall x\in R$.
Mặt khác $f(-2)=-2\Rightarrow \min f(x)=-2$
Ta sử dụng bất đẳng thức bunhiacopski để tìm giá trị lớn nhất của hàm số:
Áp dụng bunhiacopski cho hai dãy : $x;\sqrt{4-x^2}$ và $1;1$ ta có:
$[x^2+(4-x^2)](1^2+1^2)\geq (x+\sqrt{4-x^2})^2\Rightarrow 8\geq (x+\sqrt{4-x^2})^2 \Rightarrow \begin{cases}f(x)\leq 2\sqrt{2} \\ f(\sqrt{2}=2\sqrt{2} \end{cases}$
Vậy $\max f(x)=2\sqrt{2}$.

=========
Chuyên mục: Ứng dụng hàm số để chứng minh Bất đẳng thức

Bài liên quan:

  1. Đề bài: Cho $x,y \geq 0$ và $x+y=1$. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức :                        $P=3^{2x}+3^y$.
  2. Đề bài: Cho $\begin{cases}0
  3. Đề bài: Chứng minh rằng:$a.|\sin x -\sin y|\leq |x-y|, \forall x,y \in R$$b.|\sin x|\leq |x|, \forall x \in R$
  4. Đề bài: Cho $a>b>0$.Chứng minh rằng:$\frac{a-b}{a}
  5. Đề bài: Chứng minh rằng:$\frac{x}{1+x}
  6. Đề bài: Chứng minh rằng: với mọi $\triangle  ABC$:$(\tan \frac{A}{2})^{2\sqrt{2}}+(\tan \frac{B}{2})^{2\sqrt{2}}+(\tan \frac{C}{2})^{2\sqrt{2}} \geq 3^{1-\sqrt{2}}$
  7. Đề bài: Cho $\triangle  ABC$ có $3$ góc nhọn.Chứng minh rằng:$\tan A+\tan B+\tan C \geq 3 \sqrt {3}$
  8. Đề bài: Giả sử $x, y$ là các số thay đổi thỏa mãn: $x > 0, y > 0, x + y = 1.$Hãy tìm giá trị nhỏ nhất của biểu thức: $P = \frac{x}{\sqrt {1 – x} } + \frac{y}{\sqrt {1 – y} }$
  9. Đề bài:  Chứng minh rằng $\sin20^0>\frac{1}{3}$
  10. Đề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$
  11. Đề bài: Chứng minh rằng nếu $0
  12. Đề bài: Chứng minh rằng nếu $0 < b < a$ thì $\frac{{a - b}}{a} < \ln \frac{a}{b} < \frac{{a - b}}{b}$
  13. Đề bài: 1)    Với $x \in [ – 1;1] $,   chứng minh $\sqrt[4]{2} < \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + x}} \le 2$2)    Tìm miền giá trị của   $y=\sin^{2n}x+\cos^{2n}x$ với $n\in Z^+$ 3)    Chứng minh:   $4^{|\sin x|} + 2^{|\cos x|} \ge 3$
  14. Đề bài:  Chứng minh rằng với mọi số thực $a, b, c$ thỏa mãn điều kiện $a + b + c= 1$ thì:              $\frac{1}{3^a} + \frac{1}{3^b} + \frac{1}{3^c} \ge 3\left( {\frac{a}{3^a} + \frac{b}{3^b} + \frac{c}{3^c}} \right)$
  15. Đề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $f(x)=\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}$ với $-3\leq x\leq 6$.

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.