• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Học Toán lớp 10 – SGK Cánh diều / Trả lời câu hỏi trong bài 4 Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng – Toán 10 Cánh Diều

Trả lời câu hỏi trong bài 4 Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng – Toán 10 Cánh Diều

Ngày 10/07/2022 Thuộc chủ đề:Học Toán lớp 10 – SGK Cánh diều Tag với:Chương 7: Phương pháp tọa độ trong mặt phẳng

Trả lời câu hỏi trong bài 4 Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng – Toán 10 Cánh Diều

=======

LT-VD 1:  Xét vị trí tương đối của hai đường thẳng

${{\Delta }_{1}}$: $\left\{ \begin{align}& x=1+{{t}_{1}} \\ & y=-2+{{t}_{1}} \\ \end{align} \right.$ và

${{\Delta }_{2}}$: $\left\{ \begin{align}& x=2{{t}_{2}} \\ & y=-3+2{{t}_{2}} \\ \end{align} \right.$

Hướng dẫn giải:

Đường thẳng  ${{\Delta }_{1}}$; ${{\Delta }_{2}}$ lần lượt có vecto chỉ phương: $\overrightarrow{{{u}_{1}}}=\left( 1;1 \right)$ ;  $\overrightarrow{{{u}_{2}}}=\left( 2;2 \right)$. 

$\Rightarrow$ $\overrightarrow{{{u}_{2}}}$ = 2 $\overrightarrow{{{u}_{1}}}$.

Chọn t1=0 ta có điểm $M\left( 1;-2 \right)\in {{\Delta }_{1}}$ . Thay tọa độ của  $M\left( 1;-2 \right)$ vào ${{\Delta }_{2}}$ ta được:

$\left\{ \begin{align}& 1=2.{{t}_{2}} \\ & y=-2+{{t}_{2}} \\ \end{align} \right.$ $\Leftrightarrow \left\{ \begin{align}& 1=2.{{t}_{2}} \\ & y=-2+{{t}_{2}}\\\end{align} \right.$ $\Leftrightarrow \left\{ \begin{align}& {{t}_{2}}=\frac{1}{2} \\ & -2=-2+{{t}_{2}} \\ \end{align} \right.$ $\Leftrightarrow \left\{ \begin{align}& {{t}_{2}}=\frac{1}{2} \\ & {{t}_{2}}=0 \\ \end{align} \right.$ (vô lí)

$\Rightarrow$ $M\left( 1;-2 \right)\notin {{\Delta }_{2}}$.

Vậy ${{\Delta }_{1}}$ //${{\Delta }_{2}}$.

LT-VD 2:  Xét vị trí tương đối của hai đường thẳng d: x + 2y -2 = 0 với mỗi đường thẳng sau

${{\Delta }_{1}}$: 3x-2y + 6 =0

${{\Delta }_{2}}$: x + 2y + 2 = 0

${{\Delta }_{3}}$: 2x + 4y – 4 = 0

Hướng dẫn giải:

$\left\{ \begin{align}& x+2y-2=0 \\ & 3x-2y+6=0 \\ \end{align} \right.$ $\Leftrightarrow$ $\left\{ \begin{align}& x+2y-2=0 \\& 3x-2y+6=0 \\\end{align} \right.$ $\Leftrightarrow$ $\left\{ \begin{align}& 4x=-4 \\& y=\frac{2-x}{2} \\\end{align} \right.$ $\Leftrightarrow \left\{ \begin{align}& x=-1 \\& y=\frac{3}{2} \\\end{align} \right.$

$\Rightarrow$ Hệ có nghiệm duy nhất $x=-1$ và $y=\frac{3}{2}$

Vậy d và ${{\Delta }_{1}}$ có 1 điểm chung, hay d  cắt ${{\Delta }_{1}}$ .

$\left\{ \begin{align}& x+2y-2=0 \\ & x+2y+2=0 \\ \end{align} \right.$ $\Leftrightarrow$ $\left\{ \begin{align}& x+2y-2=0 \\& x+2y+2=0 \\\end{align} \right.$ 

Có: $\frac{1}{1}=\frac{2}{2}\ne \frac{-2}{-4}$ $\Rightarrow$ Hệ vô nghiệm.

Vậy d và ${{\Delta }_{2}}$ không có điểm chung, tức d // ${{\Delta }_{2}}$

$\left\{ \begin{align}& x+2y-2=0 \\ & 2x+4y-4=0 \\ \end{align} \right.$ $\Leftrightarrow$ $\left\{ \begin{align}& x+2y-2=0 \\& 2x+4y-4=0 \\\end{align} \right.$ 

Có: $\frac{1}{2}=\frac{2}{4} =\frac{-2}{-4}$ $\Rightarrow$ Hệ có vô số nghiệm.

Vậy d và ${{\Delta }_{3}}$ có vô số điểm chung, tức d $\equiv$ ${{\Delta }_{3}}$.

LT-VD 3:  Tính số đo góc giữa hai đường thẳng ${{\Delta }_{1}}$ và ${{\Delta }_{2}}$ trong mỗi trường hợp sau:

a. ${{\Delta }_{1}}$ : $\left\{ \begin{align}& x=-3+3\sqrt{3}t \\& y=2+3t \\\end{align} \right.$

và ${{\Delta }_{2}}$: y – 4 = 0.

b. ${{\Delta }_{1}}$: 2x – y = 0 và ${{\Delta }_{2}}$: -x+3y – 5 = 0.

Hướng dẫn giải:

a. Đường thẳng  ${{\Delta }_{1}}$; ${{\Delta }_{2}}$ lần lượt có vecto chỉ phương: $\overrightarrow{{{u}_{1}}}=\left( 3\sqrt{3};3 \right)$ ;  $\overrightarrow{{{u}_{2}}}=\left( 1;0 \right)$. 

$\cos \left( {{\Delta }_{1}},{{\Delta }_{2}}, \right)=\frac{\left| 3\sqrt{3}.1+3.0 \right|}{\sqrt{{{(3\sqrt{3})}^{2}}+{{1}^{2}}}.\sqrt{{{3}^{2}}+{{0}^{2}}}}=\frac{3\sqrt{3}}{2\sqrt{7}.3}=\frac{\sqrt{21}}{14}$.

$\widehat{\left( {{\Delta }_{1}},{{\Delta }_{2}}, \right)}\approx 70,{{9}^{o}}$

b. Đường thẳng  ${{\Delta }_{1}}$; ${{\Delta }_{2}}$ lần lượt có vecto pháp tuyến: $\overrightarrow{{{n}_{1}}}=\left( 2;-1 \right)$ ;  $\overrightarrow{{{n}_{2}}}=\left( -1;3 \right)$. 

$\cos \left( {{\Delta }_{1}},{{\Delta }_{2}}, \right)=\frac{\left| 2.(-1)+(-1).3 \right|}{\sqrt{{{2}^{2}}+{{(-1)}^{2}}}.\sqrt{{{(-1)}^{2}}+{{3}^{2}}}}=\frac{5}{\sqrt{5}.\sqrt{5}}=1$

$\widehat{\left( {{\Delta }_{1}},{{\Delta }_{2}}, \right)}$ = 90o

LT-VD 4:

a. Tính khoảng cách từ điểm O(0;0) đến đường thẳng ${{\Delta }$:

$\frac{x}{-4}+\frac{y}{2}=1$

b. Tính khoảng cách giữa hai đường thẳng song song:

${{\Delta }_{1}}$: x -y + 1 =  0 và ${{\Delta }_{2}}$: x -y + 1$ 

Hướng dẫn giải:

a. $\Delta :2x-4y+8=0$

$d\left( O;\Delta  \right)=\frac{\left| 2.0-4.0+8 \right|}{\sqrt{{{2}^{2}}+{{(-4)}^{2}}}}=\frac{8}{2\sqrt{5}}=\frac{4\sqrt{5}}{5}$

b. Có: $\frac{1}{1}=\frac{-1}{-1}$

$\Rightarrow$ ${{\Delta }_{1}}$ // ${{\Delta }_{2}}$

Chọn M(0; 1) $\in {{\Delta }_{1}}$ 

$\Rightarrow$ $d({{\Delta }_{1}};{{\Delta }_{2}})=d(M;{{\Delta }_{2}})(M\in {{\Delta }_{1}})$

$d\left( M;{{\Delta }_{2}} \right)=\frac{\left| 0-1-1 \right|}{\sqrt{{{1}^{2}}+{{(-1)}^{2}}}}=\frac{2}{\sqrt{2}}=\sqrt{2}$

 

============

Thuộc chủ đề: Học Toán lớp 10 – Cánh diều

Bài liên quan:

  1. Lý thuyết Bài tập cuối chương 7 – Toán 10 Cánh Diều
  2. Lý thuyết Bài 6: Ba đường conic – Toán 10 Cánh Diều
  3. Lý thuyết Bài 5: Phương trình đường tròn – Toán 10 Cánh Diều
  4. Lý thuyết Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng – Toán 10 Cánh Diều
  5. Lý thuyết Bài 3: Phương trình đường thẳng – Toán 10 Cánh Diều
  6. Lý thuyết Bài 2: Biểu thức tọa độ của các phép toán vectơ – Toán 10 Cánh Diều
  7. Lý thuyết Bài 1: Tọa độ của vectơ – Toán 10 Cánh Diều
  8. Trả lời câu hỏi trong bài Thực hành phần mềm Geogebra – Toán 10 Cánh Diều
  9. Trả lời câu hỏi trong Bài tập cuối chương VII trang 103 – Toán 10 Cánh Diều
  10. Trả lời câu hỏi trong bài 6 Ba đường conic – Toán 10 Cánh Diều
  11. Trả lời câu hỏi trong bài 5 Phương trình đường tròn – Toán 10 Cánh Diều
  12. Trả lời câu hỏi trong bài 3 Phương trình đường thẳng – Toán 10 Cánh Diều
  13. Trả lời câu hỏi trong bài 2 Biểu thức tọa độ của các phép toán vectơ – Toán 10 Cánh Diều
  14. Trả lời câu hỏi trong bài 1 Tọa độ của vectơ – Toán 10 Cánh Diều

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Học Toán lớp 10 – SGK Cánh diều

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.