Đề bài: Cho hàm số: $y = \frac{{{x^2} + mx + 1}}{{x - 1}}$1) Tìm $m$ để hàm số đồng biến trên khoảng $\left( { - \infty ;1} \right)$ và trên $\left( {1; + \infty } \right)$.2) Tìm $m$ để tiệm cận xiên của đồ thị hàm số tạo với các trục tọa độ một tam giác có diện tích bằng 8 (diện tích đơn vị).3) Tìm $m$ để đường thẳng $y = m$ cắt đồ thị hàm số tại 2 điểm $A, B$ , … [Đọc thêm...] vềĐề: Cho hàm số: $y = \frac{{{x^2} + mx + 1}}{{x – 1}}$1) Tìm $m$ để hàm số đồng biến trên khoảng $\left( { – \infty ;1} \right)$ và trên $\left( {1; + \infty } \right)$.2) Tìm $m$ để tiệm cận xiên của đồ thị hàm số tạo với các trục tọa độ một tam giác có diện tích bằng 8 (diện tích đơn vị).3) Tìm $m$ để đường thẳng $y = m$ cắt đồ thị hàm số tại 2 điểm $A, B$ , $OA \bot OB$.4) Khảo sát sự biến thiên và vẽ đồ thị của hàm số ứng với $m = 1$
Đường tiệm cận của đồ thị
Đề: Cho hàm số: $y = \frac{{{x^2} + 2x\cos \alpha + 1}}{{x + 2\sin \alpha }}$1) Xác định tiệm cận xiên và tâm đối xứng của đồ thị.2) Tìm $\alpha $ để hàm số có cực đại và cực tiểu.3) Tìm $\alpha $ để từ gốc tọa độ có thể kẻ đến đồ thị hai tiếp tuyến phân biệt.Khi đó gọi $({x_1},{y_1}),({x_2},{y_2})$ là các tọa độ các tiếp điểm: chứng tỏ rằng ${x_1}{x_2} + {y_1}{y_2} = 0$
Đề bài: Cho hàm số: $y = \frac{{{x^2} + 2x\cos \alpha + 1}}{{x + 2\sin \alpha }}$1) Xác định tiệm cận xiên và tâm đối xứng của đồ thị.2) Tìm $\alpha $ để hàm số có cực đại và cực tiểu.3) Tìm $\alpha $ để từ gốc tọa độ có thể kẻ đến đồ thị hai tiếp tuyến phân biệt.Khi đó gọi $({x_1},{y_1}),({x_2},{y_2})$ là các tọa độ các tiếp điểm: chứng tỏ rằng ${x_1}{x_2} + {y_1}{y_2} = … [Đọc thêm...] vềĐề: Cho hàm số: $y = \frac{{{x^2} + 2x\cos \alpha + 1}}{{x + 2\sin \alpha }}$1) Xác định tiệm cận xiên và tâm đối xứng của đồ thị.2) Tìm $\alpha $ để hàm số có cực đại và cực tiểu.3) Tìm $\alpha $ để từ gốc tọa độ có thể kẻ đến đồ thị hai tiếp tuyến phân biệt.Khi đó gọi $({x_1},{y_1}),({x_2},{y_2})$ là các tọa độ các tiếp điểm: chứng tỏ rằng ${x_1}{x_2} + {y_1}{y_2} = 0$
