• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Toán lớp 10 / Lý thuyết bài Dấu của tam thức bậc hai

Lý thuyết bài Dấu của tam thức bậc hai

Ngày 07/01/2020 Thuộc chủ đề:Toán lớp 10 Tag với:Học bài 5 chương 4 đại số 10

Lý thuyết bài Dấu của tam thức bậc hai

 LÝ THUYẾT VỀ DẤU CỦA TAM THỨC BẬC HAI

1. Tam thức bậc hai :

• Tam thức bậc hai (đối với $x$) là biểu thức dạng $a{{x}^{2}}+bx+c$, trong đó $a$, $b$, $c$ là những số cho trước với $a\ne 0.$
• Nghiệm của phương trình $a{{x}^{2}}+bx+c=0$ được gọi là nghiệm của tam thức bậc hai $f\left( x \right)=a{{x}^{2}}+bx+c.$
• $\Delta ={{b}^{2}}-4ac$ và $\Delta’=b’^{2}-ac$ theo thứ tự được gọi là biệt thức và biệt thức thu gọn của tam thức bậc hai $f\left( x \right)=a{{x}^{2}}+bx+c.$

2. Dấu của tam thức bậc hai :

ĐỊNH LÍ

Cho \(f(x)=ax^2+bx+c\,(a\neq 0), \Delta = b^2-4ac\)

  • Nếu \(\Delta <0\)thì \(f(x)\) luôn cùng dấu với hệ số \(a, \forall x \in \mathbb{R}\)
  • Nếu \(\Delta =0\)thì \(f(x)\) luôn cùng dấu với hệ số a trừ khi \(x=-\frac{-b}{2a}\)
  • Nếu \(\Delta >0\)thì \(f(x)\) cùng dấu với hệ số a khi \(x<x_1\)hoặc \(x>x_2\), trái dấu với hệ số a khi \(x_1<x<x_2\)

trong đó \(x_1; x_2\,(x_1<x_2)\) là hai nghiệm của \(f(x)\).

Lý thuyết bài Dấu của tam thức bậc hai

CHÚ Ý
Cũng như khi giải phương trình bậc hai, khi xét dấu tam thức bậc hai, ta có thể dùng biểu thức thu gọn $\Delta ‘$thay cho $\Delta $ và cũng được các kết quả tương tự.
Ví dụ 1: $f(x) = 2{x^2} – x + 1 > 0$với mọi $x \in R$ vì tam thức f(x) có$ \Delta  =  – 7 < 0$ và a = 2 > 0

NHẬN XÉT
Từ định lý về dấu của tam thức bậc hai, ta thấy chỉ có một trường hợp duy nhất trong đó dấu của tam thức không thay đổi ( luôn âm hoặc luôn dương), đó là khi $\Delta  < 0$. Lúc đó, dấu của tam thức trùng với dấu của hệ số a. với \(\Delta = b^2-4ac\).

Ta có:

  • \(f(x) >0 \quad \forall x \in \mathbb{R} \Leftrightarrow \begin{cases}\Delta <0 \\ a>0\end{cases}\)
  • \(f(x) <0 \quad \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} \Delta <0 \\ a<0 \end{cases}\)
  • \(f(x) \ge 0 \quad \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} \Delta \le 0 \\ a>0 \end{cases}\)
  • \(f(x) \le 0 \quad \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} \Delta \le 0 \\ a<0 \end{cases}\)

Dấu của tam thức bậc hai được thể hiện trong các bảng sau:
• Trường hợp 1: $Δ<0$ (tam thức bậc hai vô nghiệm).

Lý thuyết bài Dấu của tam thức bậc hai

• Trường hợp 2: $Δ=0$ (tam thức bậc hai có nghiệm kép ${x_0} = – \frac{b}{{2a}}$).

Lý thuyết bài Dấu của tam thức bậc hai

• Trường hợp 3: $Δ>0$ (tam thức bậc hai có hai nghiệm ${x_1}$ và ${x_2}$ $\left( {{x_1} < {x_2}} \right)$).

Lý thuyết bài Dấu của tam thức bậc hai

 


II. Bất phương trình bậc hai một ẩn

1. Bất phương trình bậc hai

Bất phương trình bậc nhất hai ẩn x  là bất phương trình dạng $ax^2+bx+c<0$ (hoặc $ax^2+bx+c>0; ax^2+bx+c \geq 0; ax^2+bx+c \leq 0$

trong đó a, b, c là những số thực đã cho, \(a \neq 0\)

2. Giải bất phương trình bậc hai

Giải bất phương trình bậc hai $ax^2+bx+c<0$thực chất là tìm các khoảng mà trong đó \(f(x)=ax^2+bx+c\) cùng dấu với hệ số a (trường hợp a < 0) hay trái dấu với hệ số a (trường hợp a > 0).

 

Bài liên quan:

  1. Ứng dụng tam thức bậc hai, bất phương trình bậc hai trong chứng minh bất đẳng thức và tìm giá trị lớn nhất, nhỏ nhất
  2. Giải bất phương trình tích và bất phương trình chứa ẩn ở mấu thức
  3. Giải hệ bất phương trình bậc hai một ẩn
  4. Giải bất phương trình bậc hai
  5. Bài toán chứa tham số liên quan đến dấu của tam thức bậc hai
  6. Xét dấu của biểu thức chứa tam thức bậc hai

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • CHUYÊN ĐỀ TOÁN 10 CHÂN TRỜI SÁNG TẠO ĐẦY ĐỦ FILE WORD 2023
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Chân trời – 2022
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Kết nối – 2022
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Cánh diều – 2022
  • Học toán lớp 10
  • Chuyên đề Toán 10 (CTST) – HK1

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.