• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Trắc nghiệm Xác định điểm thỏa điều kiện cho trước / Đề: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;1;0} \right),B\left( { – 1;3;2} \right)\) và mặt phẳng \(\left( \alpha  \right):x – y + z – 3 = 0\). Tìm tọa độ điểm M thuộc mặt phẳng \(\left( \alpha  \right)\) sao cho \(S = M{A^2} + M{B^2}\) đạt giá trị nhỏ nhất.

Đề: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;1;0} \right),B\left( { – 1;3;2} \right)\) và mặt phẳng \(\left( \alpha  \right):x – y + z – 3 = 0\). Tìm tọa độ điểm M thuộc mặt phẳng \(\left( \alpha  \right)\) sao cho \(S = M{A^2} + M{B^2}\) đạt giá trị nhỏ nhất.

Đăng ngày: 26/05/2019 Biên tâp: admin Để lại bình luận Thuộc chủ đề:Trắc nghiệm Xác định điểm thỏa điều kiện cho trước

trac nghiem hinh hoc oxyz
====
Câu hỏi:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;1;0} \right),B\left( { – 1;3;2} \right)\) và mặt phẳng \(\left( \alpha  \right):x – y + z – 3 = 0\). Tìm tọa độ điểm M thuộc mặt phẳng \(\left( \alpha  \right)\) sao cho \(S = M{A^2} + M{B^2}\) đạt giá trị nhỏ nhất.

  • A. \(M\left( {\frac{4}{3};\frac{2}{3};\frac{7}{3}} \right)\)    \
  • B.  \(M\left( {1;1;3} \right)\)
  • C. \(M\left( {2;1;2} \right)\)  
  • D. \(M\left( {0;2;1} \right)\)

Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài.

Đáp án đúng: A

Gọi I là trung điểm của AB. Ta có \(I\left( {0;2;1} \right)\)

Vì MI là trung tuyến của MAB nên \(M{I^2} = \frac{{M{A^2} + M{B^2}}}{2} – \frac{{A{B^2}}}{4}\)

\( \Leftrightarrow M{A^2} + M{B^2} = 2M{I^2} + \frac{{A{B^2}}}{2}.\)

Để S đạt giá trị nhỏ nhất thì MI nhỏ nhất hay M là hình chiếu của I lên (P).

Vtpt của (P) là \(\overrightarrow n  = \left( {1; – 1;1} \right)\).

 Phương trình đường thẳng đi qua I và vuông góc với (P) là\(d:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 2 – t}\\{z = 1 + t}\end{array}} \right.\)

Khi đó \(M = d \cap \left( P \right)\). Viết hệ phương trình giao điểm của d và (P) ta có: \(t = \frac{4}{3}\)

Vậy tọa độ \(M\left( {\frac{4}{3};\frac{2}{3};\frac{7}{3}} \right)\).

=======|+|
Xem lại lý thuyết Phương pháp tọa độ trong không gian

Tag với:Trắc nghiệm Hình học OXYZ van dung

Bài liên quan:

  • Đề: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;4;2} \right),B\left( { – 1;2;4} \right)\) và đường thẳng \(\Delta :\frac{{x – 1}}{{ – 1}} = \frac{{y + 2}}{1} = \frac{z}{2}\). Tìm tọa độ điểm M thuộc \(\Delta \) sao cho: \(M{A^2} + M{B^2} = 28.\)
  • Đề: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):6x + 3y – 2z + 24 = 0\) và điểm \(A\left( {2;5;1} \right)\) . Tìm tọa độ hình chiếu vuông góc H của A trên (P)
  • Đề: Ba mặt phẳng\(x + 2y – z – 6 = 0,2x – y + 3z + 13 = 0,3x – 2y + 3z + 16 = 0\) cắt nhau tại điểm A. Khẳng định nào sau đây là đúng?
  • Đề: Trong không gian với hệ tọa độ Oxyz, Cho các điểm \(A\left( {2;1;0} \right),B\left( {1;2;2} \right),M\left( {1;1;0} \right)\) và mặt phẳng \(\left( P \right):x + y + z – 20 = 0\). Tìm tọa độ điểm N thuộc đường thẳng AB sao cho MN song song với mặt phẳng (P).
  • Đề: Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {5;3; – 1} \right),B\left( {2;3; – 4} \right)\)\(C\left( {1;2;0} \right)\). Tọa độ điểm D đối xứng với C qua đường thẳng AB là:
  • Đề: Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {2;3; – 1} \right),B\left( {1;2; – 3} \right)\). Đường thẳng AB cắt mặt phẳng \(\left( P \right):x + y + z = 8\) tại điểm S. Tỉ số \(\frac{{SA}}{{SB}}\) bằng:
  • Đề: Trong không gian với hệ tọa độ Oxyz, tọa độ điểm B đối xứng với điểm \(A\left( {1;2;1} \right)\) qua mặt phẳng \(\left( P \right):y – z = 0\) là:
  • Đề: Trong không gian với hệ trục tọa độ Oxyz. Cho đường thẳng \(d:\frac{{x – 3}}{1} = \frac{{y – 4}}{2} = \frac{z}{2}\) và mặt phẳng \(\left( \gamma  \right):2{\rm{x}} – y + 3{\rm{z}} + 4 = 0.\) Tìm giao điểm của đường thẳng d và mặt phẩng \(\left( \gamma  \right).\)
  • Đề: Trong không gian Oxyz, cho điểm \(A\left( {4;1; – 2} \right)\). Tọa độ điểm đối xứng của A qua mặt phẳng \(\left( {Ox{\rm{z}}} \right)\) là:
  • Đề: Trong không gian với hệ tọa độ Oxyz, cho \(A\left( {1;5;0} \right),B\left( {3;3;6} \right)\) và \(d:\frac{{x + 1}}{2} = \frac{{y – 1}}{{ – 1}} = \frac{z}{2}.\) Tìm điểm M thuộc d để tam giác MAB có diện tích nhỏ nhất.
  • Đề: Trong không gian  cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 9\) và mặt phẳng \(\left( P \right):2x – 2y + z + 3 = 0\). Gọi M(a; b; c) là điểm trên mặt cầu  (S) sao cho khoảng cách từ M đến (P) là lớn nhất. Tính tổng a+b+c.
  • Đề: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{1} = \frac{{y – 1}}{{ – 2}} = \frac{z}{{ – 1}}\)  và mặt phẳng \((P):x + y – 2z + 2 = 0,\) đường thẳng \(\Delta \) là hình chiếu vuông góc của đường thẳng d trên mặt phẳng (Oxy). Tìm tọa độ giao điểm I của đường thẳng \(\Delta \) với mặt phẳng (P).

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2021) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.