• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Xác định điểm thỏa điều kiện cho trước / Đề: Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {2;3; – 1} \right),B\left( {1;2; – 3} \right)\). Đường thẳng AB cắt mặt phẳng \(\left( P \right):x + y + z = 8\) tại điểm S. Tỉ số \(\frac{{SA}}{{SB}}\) bằng:

Đề: Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {2;3; – 1} \right),B\left( {1;2; – 3} \right)\). Đường thẳng AB cắt mặt phẳng \(\left( P \right):x + y + z = 8\) tại điểm S. Tỉ số \(\frac{{SA}}{{SB}}\) bằng:

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Xác định điểm thỏa điều kiện cho trước Tag với:Trắc nghiệm Hình học OXYZ van dung

trac nghiem hinh hoc oxyz
====
Câu hỏi:

Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {2;3; – 1} \right),B\left( {1;2; – 3} \right)\). Đường thẳng AB cắt mặt phẳng \(\left( P \right):x + y + z = 8\) tại điểm S. Tỉ số \(\frac{{SA}}{{SB}}\) bằng:

  • A. \(\frac{1}{2}\)      
  • B. 2
  • C. 4
  • D. 1

Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài.

Đáp án đúng: A

Ta có: \(\overrightarrow {AB}  = \left( { – 1; – 1; – 2} \right)\) nên phương trình đường thẳng AB là: \(\left\{ \begin{array}{l}x = 2 – t\\y = 3 – t\\z =  – 1 – 2t\end{array} \right.\)

Vì \(S = \left( P \right) \cap AB\) nên tọa độ S là nghiệm hệ:

\(\left\{ \begin{array}{l}x = 2 – t\\y = 3 – t\\z =  – 1 – 2t\\x + y + z = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t =  – 1\\x = 3\\y = 4\\z = 1\end{array} \right. \Rightarrow S(3;4;1)\)

\(SA = \sqrt 6 ;SB = \sqrt {24}  = 2\sqrt 6 ;\frac{{SA}}{{SB}} = \frac{1}{2}.\)

=======|+|
Xem lại lý thuyết Phương pháp tọa độ trong không gian

Bài liên quan:

  1. Đề: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;1;0} \right),B\left( { – 1;3;2} \right)\) và mặt phẳng \(\left( \alpha  \right):x – y + z – 3 = 0\). Tìm tọa độ điểm M thuộc mặt phẳng \(\left( \alpha  \right)\) sao cho \(S = M{A^2} + M{B^2}\) đạt giá trị nhỏ nhất.
  2. Đề: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;4;2} \right),B\left( { – 1;2;4} \right)\) và đường thẳng \(\Delta :\frac{{x – 1}}{{ – 1}} = \frac{{y + 2}}{1} = \frac{z}{2}\). Tìm tọa độ điểm M thuộc \(\Delta \) sao cho: \(M{A^2} + M{B^2} = 28.\)
  3. Đề: Trong không gian Oxyz, cho điểm \(A\left( {4;1; – 2} \right)\). Tọa độ điểm đối xứng của A qua mặt phẳng \(\left( {Ox{\rm{z}}} \right)\) là:
  4. Đề: Trong không gian với hệ trục tọa độ Oxyz. Cho đường thẳng \(d:\frac{{x – 3}}{1} = \frac{{y – 4}}{2} = \frac{z}{2}\) và mặt phẳng \(\left( \gamma  \right):2{\rm{x}} – y + 3{\rm{z}} + 4 = 0.\) Tìm giao điểm của đường thẳng d và mặt phẩng \(\left( \gamma  \right).\)
  5. Đề: Trong không gian với hệ tọa độ Oxyz, tọa độ điểm B đối xứng với điểm \(A\left( {1;2;1} \right)\) qua mặt phẳng \(\left( P \right):y – z = 0\) là:
  6. Đề: Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {5;3; – 1} \right),B\left( {2;3; – 4} \right)\)\(C\left( {1;2;0} \right)\). Tọa độ điểm D đối xứng với C qua đường thẳng AB là:
  7. Đề: Trong không gian với hệ tọa độ Oxyz, Cho các điểm \(A\left( {2;1;0} \right),B\left( {1;2;2} \right),M\left( {1;1;0} \right)\) và mặt phẳng \(\left( P \right):x + y + z – 20 = 0\). Tìm tọa độ điểm N thuộc đường thẳng AB sao cho MN song song với mặt phẳng (P).
  8. Đề: Ba mặt phẳng\(x + 2y – z – 6 = 0,2x – y + 3z + 13 = 0,3x – 2y + 3z + 16 = 0\) cắt nhau tại điểm A. Khẳng định nào sau đây là đúng?
  9. Đề: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):6x + 3y – 2z + 24 = 0\) và điểm \(A\left( {2;5;1} \right)\) . Tìm tọa độ hình chiếu vuông góc H của A trên (P)
  10. Đề: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: \(\frac{{x + 1}}{{ – 2}} = \frac{y}{{ – 1}} = \frac{{z – 2}}{1}\) và hai điểm \(A\left( { – 1;3;1} \right),B\left( {0;2; – 1} \right)\). Tìm tọa độ điểm C thuộc d sao cho diện tích của tam giác ABC bằng \(2\sqrt 2 \)  
  11. Đề: Trong không gian với hệ tọa độ Oxyz cho mặt phẳng \((P):x + y + z – 1 = 0\) và hai điểm \(A\left( {1; – 3;0} \right),B\left( {5; – 1; – 2} \right)\). Tìm tọa độ điểm M trên mặt phẳng (P) sao cho \(\left| {MA – MB} \right|\) đạt giá trị lớn nhất.
  12. Đề: Trong không gian với hệ toạ độ \(Oxyz\), cho ba điểm \(A(1;1;1)\), \(B(2; – 1;2)\) và \(C(3;4; – 4)\). Giao điểm \(M\) của trục \(Ox\) với mặt phẳng \((ABC)\) là điểm nào dưới đây?
  13. Đề: Trong không gian với hệ tọa độ Oxyz , cho mặt cầu \((S):{(x + 1)^2} + {(y – 2)^2} + {(z – 3)^2} = 49\) và mặt phẳng \((P):2x – 3y + 6z – 72 = 0\). Tìm \(M \in \left( S \right)\) sao cho khoảng cách từ M đến (P) lớn nhất.
  14. Đề: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x – 3}}{2} = \frac{{y + 1}}{1} = \frac{{z – 1}}{2}\) và điểm \(M\left( {1;2; – 3} \right)\). Tìm tọa độ hình chiếu vuông góc của điểm M lên đường thẳng d.
  15. Đề: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x + 2y + z + 6 = 0\). Tìm tọa độ điểm M thuộc tia Oz sao cho khoảng cách từ M đến (P) bằng 3.

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.