• Skip to main content
  • Skip to primary sidebar
  • Học toán
  • Sách toán
  • Môn Toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
  • Bài mới

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán



You are here: Home / Trắc nghiệm hình học của số phức / Đề bài: Tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn \(\left| {z – 3 + 5i} \right| = 4\) là một đường tròn. Tính chu vi C của đường tròn đó.

Đề bài: Tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn \(\left| {z – 3 + 5i} \right| = 4\) là một đường tròn. Tính chu vi C của đường tròn đó.

07/06/2019 by admin Leave a Comment


Câu hỏi:

Tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn \(\left| {z – 3 + 5i} \right| = 4\) là một đường tròn. Tính chu vi C của đường tròn đó.

  • A. \(C = 4\pi .\)
  • B. \(C = 2\pi .\)
  • C. \(C = 8\pi .\)
  • D. \(C = 16\pi .\)
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài.

Đáp án đúng: C

Đặt \(z = x + yi\,\,\left( {x,y \in \mathbb{R}} \right)\)

Ta có: \(\left| {z – 3 + 5i} \right| = 4 \Rightarrow \left| {x + yi – 3 + 5i} \right| = 4\)

\( \Rightarrow \left| {(x – 3) + (y + 5)i} \right| = 4 \Rightarrow {\left( {x – 3} \right)^2} + {(y + 5)^2} = {4^2}\)

Tập hợp điểm biểu diễn số phức z là đường tròn có tâm \(I\left( {3; – 5} \right)\) và bán kính \(R = 4.\)

Khi đó: \(C = 2\pi R = 8\pi .\)

Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Bài học cùng chương bài

  1. Đề bài: Cho số phức z, w khác 0 sao cho \(\left| {z – w} \right| = 2\left| z \right| = \left| w \right|\). Phần thực của số phức \(u = \frac{z}{w}\) là:
  2. Đề bài: Tìm phần thực của số phức z biết: \(z + \frac{{{{\left| z \right|}^2}}}{z} = 10\)
  3. Đề bài: Tìm số phức z có \(\left| z \right| = 1\) và \(\left| {z + i} \right|\) đạt giá trị lớn nhất.
  4. Đề bài: Trong mặt phẳng phức, gọi \(A,B,C\) lần lượt là các điểm biểu diễn của các số phức \({z_1} =  – 1 + 3i, {z_2} = 1 + 5i, {z_3} =  4 + i\). Tứ giác \(ABCD\) là một hình bình hành thì \(D\) là điểm biểu diễn số phức nào?
  5. Đề bài: Cho số phức \(z\) có phần thực dương và thỏa \(\bar z – \frac{{\left( {5 + \sqrt 3 i} \right)}}{z} – 1 = 0\). Tính môđun của z.
  6. Đề bài: Cho số phức z thỏa mãn \({\rm{w}} = \left( {z + 1} \right)\left( {\overline z  – 2i} \right)\) là một số thuần ảo. Tập hợp điểm biểu diễn số phức z là một đường tròn có diện tích bằng bao nhiêu?
  7. Đề bài: Trên mặt phẳng tọa độ Oxy, tìm tập hợp các điểm biểu diễn các số phức z thỏa mãn điều kiện \(\left| {z – 2} \right| + \left| {z + 2} \right| = 10.\)
  8. Cho số phức z thỏa mãn điều kiện \(\left| {z – 1} \right| = \sqrt 2 \). Tìm giá trị lớn nhất của \(T = \left| {z + i} \right| + \left| {z – 2 – i} \right|.\)
  9. Đề bài: Trên mặt phẳg tọa độ Oxy, tìm tập hợp điểm biểu diễn số phức z thỏa mãn \(\left| {\frac{{z – i}}{{z + i}}} \right| = 1.\)
  10. Đề bài: Cho số phức \(z \ne 0\) sao cho z không phải là số thực và \({\rm{w}} = \frac{z}{{1 + {z^2}}}\) là số thực. Tính \(\frac{{\left| z \right|}}{{1 + {{\left| z \right|}^2}}}.\)
  11. Đề bài: Cho số phức \(z = 2 – 3i\). Tính môđun của số phức \(w = z – 1.\)
  12. Đề bài: Trong mặt phẳng phức \(A\left( { – 4;1} \right),B\left( {1;3} \right),C\left( { – 6;0} \right)\) lần lượt biểu diễn các số phức \({z_1},{z_2},{z_3}\) . Trọng tâm G của tam giác ABC biểu diễn số phức nào sau đây?
  13. Đề bài: Trong mặt phẳng phức, tập hợp các điểm M biểu diễn số phức z biết \(\left| z \right| = \left| {\bar z – 3 + 4i} \right|\)là:
  14. Đề bài: Xác định tập hợp tất cả những điểm trong mặt phẳng tọa độ biểu diễn số phức z sao cho \({z^2} = {\left( {\overline z } \right)^2}.\)
  15. Đề bài: Tìm số phức z có mô đun nhỏ nhất thỏa điều kiện \(\left( {z – 2} \right)\left( {\overline z  + 2i – 1} \right)\) là số thực.

Chuyên mục: Trắc nghiệm hình học của số phức Thẻ: Trắc nghiệm số phức vận dụng

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Primary Sidebar

MỤC LỤC

  • Đề bài: Cho số phức z, w khác 0 sao cho \(\left| {z – w} \right| = 2\left| z \right| = \left| w \right|\). Phần thực của số phức \(u = \frac{z}{w}\) là:
  • Đề bài: Tìm phần thực của số phức z biết: \(z + \frac{{{{\left| z \right|}^2}}}{z} = 10\)
  • Đề bài: Tìm số phức z có \(\left| z \right| = 1\) và \(\left| {z + i} \right|\) đạt giá trị lớn nhất.
  • Đề bài: Trong mặt phẳng phức, gọi \(A,B,C\) lần lượt là các điểm biểu diễn của các số phức \({z_1} =  – 1 + 3i, {z_2} = 1 + 5i, {z_3} =  4 + i\). Tứ giác \(ABCD\) là một hình bình hành thì \(D\) là điểm biểu diễn số phức nào?
  • Đề bài: Cho số phức \(z\) có phần thực dương và thỏa \(\bar z – \frac{{\left( {5 + \sqrt 3 i} \right)}}{z} – 1 = 0\). Tính môđun của z.
  • Đề bài: Cho số phức z thỏa mãn \({\rm{w}} = \left( {z + 1} \right)\left( {\overline z  – 2i} \right)\) là một số thuần ảo. Tập hợp điểm biểu diễn số phức z là một đường tròn có diện tích bằng bao nhiêu?
  • Đề bài: Trên mặt phẳng tọa độ Oxy, tìm tập hợp các điểm biểu diễn các số phức z thỏa mãn điều kiện \(\left| {z – 2} \right| + \left| {z + 2} \right| = 10.\)
  • Cho số phức z thỏa mãn điều kiện \(\left| {z – 1} \right| = \sqrt 2 \). Tìm giá trị lớn nhất của \(T = \left| {z + i} \right| + \left| {z – 2 – i} \right|.\)
  • Đề bài: Trên mặt phẳg tọa độ Oxy, tìm tập hợp điểm biểu diễn số phức z thỏa mãn \(\left| {\frac{{z – i}}{{z + i}}} \right| = 1.\)
  • Đề bài: Cho số phức \(z \ne 0\) sao cho z không phải là số thực và \({\rm{w}} = \frac{z}{{1 + {z^2}}}\) là số thực. Tính \(\frac{{\left| z \right|}}{{1 + {{\left| z \right|}^2}}}.\)

Bài viết mới

  • Đề thi mẫu HK1 Toán lớp 2 – số 1 15/12/2019
  • Đề thi mẫu HK1 Toán lớp 1 – số 5 15/12/2019
  • Đề thi mẫu HK1 Toán lớp 1 – số 4 15/12/2019
  • Đề thi mẫu HK1 Toán lớp 1 – số 3 15/12/2019
  • Đề thi mẫu HK1 Toán lớp 1 – số 2 15/12/2019

Sách Toán © 2015 - 2019 - Giải bài tập Toán, Lý, Hóa, Sinh, Anh, soạn Văn, Sách tham khảo và đề thi.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn