• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Quốc gia Môn Toán
  • Trắc nghiệm toán 12
  • Máy tính

Đề bài: Cho số phức \(z = \frac{{{{\left( {1 + i\sqrt 3 } \right)}^2}}}{{1 + i}}.\) Tính mô đun của số phức \(\overline z  + iz.\)

Đăng ngày: 01/06/2019 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phép toán với số phức Tag với:Trắc nghiệm số phức thông hiểu


Câu hỏi:

Cho số phức \(z = \frac{{{{\left( {1 + i\sqrt 3 } \right)}^2}}}{{1 + i}}.\) Tính mô đun của số phức \(\overline z  + iz.\)

  • A. \(6\sqrt 2 .\)  
  • B. \(9\sqrt 2 .\)
  • C.  \(8\sqrt 2 .\) 
  • D. \(7\sqrt 2 .\)

Đáp án đúng: C

Ta có: \(z = \frac{{{{\left( {1 + i\sqrt 3 } \right)}^2}}}{{1 + i}} =  – 4 + 4i \Rightarrow \overline z  =  – 4 – 4i \Rightarrow \overline z  + iz =  – 8 – 8i \Rightarrow \left| {\overline z  + iz} \right| = 8\sqrt 2 .\)

Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Thuộc chủ đề:Trắc nghiệm Phép toán với số phức Tag với:Trắc nghiệm số phức thông hiểu

Bài liên quan:

  1. Đề bài: Cho hai số phức \({z_1},{z_2}\) là các nghiệm của phương trình \({z^2} + 4{\rm{z}} + 13 = 0.\) Tính mô đun của số phức \({\rm{w}} = \left( {{z_1} + {z_2}} \right)i + {z_1}{z_2}.\)
  2. Đề bài: Gọi \({z_1};{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\). Tính \(\left| {{z_1}} \right| + \left| {{z_2}} \right|.\)
  3. Đề bài: Giải phương trình \(\left( {iz – 1} \right)\left( {z + 3i} \right)\left( {\overline z  – 2 + 3i} \right) = 0\) trên tập hợp số phức.
  4. Đề bài: Gọi A, B là hai điểm biểu diễn nghiệm số phức của phương trình \({z^2} + 2z + 10 = 0\). Tính độ dài đoạn thẳng AB.
  5. Đề bài: Gọi \({z_1}\) và \({z_2}\) là các nghiệm của phương trình \({z^2} – 2{\rm{z + 5 = 0}}\) trên tập số phức. Tính \(P = z_1^4 + z_2^4\) 
  6. Đề bài: Tìm tập nghiệm S của phương trình \({z^4} + 2{z^2} – 3 = 0\) trên tập số phức.
  7. Đề bài: Gọi \({z_1},{z_2},{z_3},{z_4}\) là bốn nghiệm phức của phương trình \({z^4} – 2{z^2} – 8 = 0.\) Trên mặt phẳng tọa độ, gọi A, B, C, D lần lượt là bốn điểm biểu diễn bốn nghiệm \({z_1},{z_2},{z_3},{z_4}\) đó. Tính giá trị của P=OA+OB+OC+OD, trong đó O là gốc tọa độ. 
  8. Đề bài: Cho phương trình \({z^2} – 2x + 2 = 0.\) Mệnh đề nào sau đây là sai?
  9. Đề bài: Gọi \(z_1,z_2\) là các nghiệm phức của phương trình \({z^2} + 2x + 5 = 0\). Tính \(M = \left| {z_1^2} \right| + \left| {z_2^2} \right|.\) 
  10. Đề bài: Gọi A, B là hai điểm biểu diễn hai nghiệm phức của phương trình \({z^2} + 2z + 10 = 0\). Tính độ dài đoạn thẳng AB.
  11. Đề bài: Cho hai số phức \(z_1,z_2\) thỏa mãn \({z_1},{z_2} \ne 0;{z_1} + {z_2} \ne 0\) và \(\frac{1}{{{z_1} + {z_2}}} = \frac{1}{{{z_1}}} + \frac{2}{{{z_2}}}.\) Tính \(\left | \frac{{z_1}}{{z_2}} \right |.\)
  12. Đề bài: Cho số phức w và hai số thực a, b. Biết \({z_1} = w + 2i\) và \({z_2} = 2w – 3\) là hai nghiệm phức của phương trình \({z^2} + az + b = 0\). Tính \(T = \left| {{z_1}} \right| + \left| {{z_2}} \right|\)
  13. Đề bài:  Gọi  là hai nghiệm phức của phương trình \({z^2} + 2z + 3 = 0.\) Tính \(A = \left| {{z_1}^2} \right| + \left| {{z_2}^2} \right|\)
  14. Đề bài: Cho hai số thực b và c \(\left( {c > 0} \right).\) Ký hiệu A, B là hai điểm của mặt phẳng phức biểu diễn hai nghiệm của phương trình \({z^2} + 2b{\rm{z}} + c = 0.\) Tìm điều kiện của b và c sao cho OAB là tam giác vuông (O là gốc tọa độ).
  15. Đề bài: Gọi \({z_1},{z_2}\) là nghiệm phức của phương trình \({z^2} + 2z + 10 = 0\). Tính giá trị của biểu thức \({\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}.\)

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2022) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.