• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: Cho phương trình \({z^2} – 2x + 2 = 0.\) Mệnh đề nào sau đây là sai?

Đăng ngày: 07/06/2019 Biên tập: admin Thuộc chủ đề:Trắc nghiệm phương trình trên tập số phức Tag với:Trắc nghiệm số phức thông hiểu

adsense

trac nghiem phuong trinh so phuc


Câu hỏi:

adsense

Cho phương trình \({z^2} – 2x + 2 = 0.\) Mệnh đề nào sau đây là sai?

  • A. Phương trình đã cho không có nghiệm nào là số ảo
  • B. Phương trình đã cho có 2 nghiệm phức.
  • C. Phương trình đã cho không có nghiệm phức.
  • D. Phương trình đã cho không có nghiệm thực.
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài.

Đáp án đúng: C

\({z^2} – 2z + 2 = 0 \Leftrightarrow z = 1 \pm i.\)

Do đó phương trình đã cho có hai nghiệm phức là \(z = 1 \pm i.\) 

Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Thuộc chủ đề:Trắc nghiệm phương trình trên tập số phức Tag với:Trắc nghiệm số phức thông hiểu

Bài liên quan:

  1. Đề bài: Cho hai số phức \({z_1},{z_2}\) là các nghiệm của phương trình \({z^2} + 4{\rm{z}} + 13 = 0.\) Tính mô đun của số phức \({\rm{w}} = \left( {{z_1} + {z_2}} \right)i + {z_1}{z_2}.\)
  2. Đề bài: Gọi \({z_1};{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\). Tính \(\left| {{z_1}} \right| + \left| {{z_2}} \right|.\)
  3. Đề bài: Giải phương trình \(\left( {iz – 1} \right)\left( {z + 3i} \right)\left( {\overline z  – 2 + 3i} \right) = 0\) trên tập hợp số phức.
  4. Đề bài: Gọi A, B là hai điểm biểu diễn nghiệm số phức của phương trình \({z^2} + 2z + 10 = 0\). Tính độ dài đoạn thẳng AB.
  5. Đề bài: Gọi \(z_1,z_2\) là các nghiệm phức của phương trình \({z^2} + 2x + 5 = 0\). Tính \(M = \left| {z_1^2} \right| + \left| {z_2^2} \right|.\) 
  6. Đề bài: Gọi A, B là hai điểm biểu diễn hai nghiệm phức của phương trình \({z^2} + 2z + 10 = 0\). Tính độ dài đoạn thẳng AB.
  7. Đề bài: Cho hai số phức \(z_1,z_2\) thỏa mãn \({z_1},{z_2} \ne 0;{z_1} + {z_2} \ne 0\) và \(\frac{1}{{{z_1} + {z_2}}} = \frac{1}{{{z_1}}} + \frac{2}{{{z_2}}}.\) Tính \(\left | \frac{{z_1}}{{z_2}} \right |.\)
  8. Đề bài:  Gọi  là hai nghiệm phức của phương trình \({z^2} + 2z + 3 = 0.\) Tính \(A = \left| {{z_1}^2} \right| + \left| {{z_2}^2} \right|\)
  9. Đề bài: Cho số phức w và hai số thực a, b. Biết \({z_1} = w + 2i\) và \({z_2} = 2w – 3\) là hai nghiệm phức của phương trình \({z^2} + az + b = 0\). Tính \(T = \left| {{z_1}} \right| + \left| {{z_2}} \right|\)
  10. Đề bài: Gọi \({z_1},{z_2}\) là nghiệm phức của phương trình \({z^2} + 2z + 10 = 0\). Tính giá trị của biểu thức \({\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}.\)
  11. Đề bài: Cho hai số thực b và c \(\left( {c > 0} \right).\) Ký hiệu A, B là hai điểm của mặt phẳng phức biểu diễn hai nghiệm của phương trình \({z^2} + 2b{\rm{z}} + c = 0.\) Tìm điều kiện của b và c sao cho OAB là tam giác vuông (O là gốc tọa độ).
  12. Đề bài: Gọi \({z_1},{z_2}\) là hai nghiệm của phương trình \({z^2} – z + 1 = 0.\) Tính giá trị của biểu thức \(S = \left| {{z_1}} \right| + \left| {{z_2}} \right|.\)
  13. Đề bài: Gọi z1, z2 là hai nghiệm phức của phương trình \({z^2} – 2z + 2 = 0\). Tính \(M = z_1^{200} + z_2^{200}.\)
  14. Đề bài: Biết rằng phương trình \({z^2} + bz + c = 0\left( {b,c \in \mathbb{R}} \right)\) có một nghiệm phức là \({z_1} = 1 + 2i\). Khi đó:
  15. Đề bài: Gọi A, B là hai điểm biểu diễn nghiệm số phức của phương trình \({z^2} + 2z + 10 = 0\). Tính độ dài đoạn thẳng AB.

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2022) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.