adsense
Đề bài: Cho $n$ điểm $A_1, A_2,…A_n$ và $n$ số $k_1, k_2,…, k_n$ mà $k_1+k_2+…+k_n=k$a) Chứng minh rằng có duy nhất một điểm $G$ sao cho:$k_1 \overrightarrow{GA_1}+k_2 \overrightarrow{GA_2}+…+k_n \overrightarrow{GA_n}=\overrightarrow{0}$Điểm $G$ như thế gọi là tâm tỉ cự của hệ điểm $A_i$, gắn với các hệ số $k_i$. Trong trường hợp các hệ số $k_i$ bằng nhau (và do đó có thể xem các $k_i$ đều bằng 1) thì $G$ gọi là trọng tâm của hệ điểm $A_i$.b) Chứng minh rằng nếu $G$ là tâm tỉ cự nói ở câu a) thì với mọi điểm $O$ bất kì, ta có: $\overrightarrow{OG}=\frac{1}{k}(k_1 \overrightarrow{OA_1}+k_2 \overrightarrow{OA_2}+…+k_n \overrightarrow{OA_n})$.
Lời giải
adsense
a) Ta lấy một điểm $O$ nào đó thì: $k_1 \overrightarrow{GA_1}+k_2 \overrightarrow{GA_2}+…+k_n \overrightarrow{GA_n}=\overrightarrow{0}$
$\Leftrightarrow k_1 (\overrightarrow{OA_1}-\overrightarrow{OG})+k_2(\overrightarrow{OA_2}-\overrightarrow{OG})+…+k_n(\overrightarrow{OA_n}-\overrightarrow{OG})=\overrightarrow{0}$
$\Leftrightarrow \overrightarrow{OG}=\frac{1}{k}(k_1 \overrightarrow{OA_1}+k_2 \overrightarrow{OA_2}+…+k_n \overrightarrow{OA_n}$, vì $k\neq 0$.
Vậy điểm $G$ hoàn toàn xác định và duy nhất.
b) Suy từ câu a.
Trả lời