• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Logarit và hàm số lôgarit / Có bao nhiêu cặp số nguyên dương \(\left( {x;y} \right)\) với \(x \le 2020\) thỏa mãn \(2\left( {3x – y} \right) = 3\left( {1 + {9^y}} \right) – {\log _3}\left( {2x – 1} \right)\)

Có bao nhiêu cặp số nguyên dương \(\left( {x;y} \right)\) với \(x \le 2020\) thỏa mãn \(2\left( {3x – y} \right) = 3\left( {1 + {9^y}} \right) – {\log _3}\left( {2x – 1} \right)\)

Ngày 26/02/2023 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:HAM DAC TRUNG MU LOGA, MU - LOGA VDC, VDC Toan 2023

Có bao nhiêu cặp số nguyên dương \(\left( {x;y} \right)\) với \(x \le 2020\) thỏa mãn
\(2\left( {3x – y} \right) = 3\left( {1 + {9^y}} \right) – {\log _3}\left( {2x – 1} \right)\)

A. \(3\). B. \(1010\). C. \(4\). D. \(2020\).
Lời giải

Đặt \({\log _3}\left( {2x – 1} \right) = t \Rightarrow 2x = {3^t} + 1\), ta được phương trình như sau:
\(3\left( {{3^t} + 1} \right) – 2y = 3\left( {1 + {3^{2y}}} \right) – t \Leftrightarrow {3.3^t} + t = {3.3^{2y}} + 2y\) .
Xét hàm số \(f\left( u \right) = {3.3^u} + u \Rightarrow f’\left( u \right) = {3.3^u}\ln 3 + 1 > 0,\forall u \in \mathbb{R}\)\( \Rightarrow f\left( u \right)\) đồng biến trên \(\mathbb{R}\).
Do đó \( \Leftrightarrow t = 2y\), vậy nên \(2x = {3^{2y}} + 1 \Leftrightarrow {9^y} = 2x – 1\).
Vì \(x \le 2020 \Rightarrow {9^y} \le 4039 \Leftrightarrow y \le {\log _9}4039\). Vì \(y\) nguyên dương nên \(y \in \left\{ {1;2;3} \right\}\).
Ta thấy với mỗi giá trị nguyên của \(y\) thì tìm được 1 giá trị nguyên của \(x\). Vậy có 3 cặp \(\left( {x;y} \right)\) thỏa mãn.

===========
Đây là các câu VD-VDC trong đề ÔN TẬP HÀM SỐ MŨ – LOGARIT.

Bài liên quan:

  1. Phương trình \({\log _2}\frac{{{x^2} + 3x + 2}}{{3{x^2} – 5x + 8}} = {x^2} – 4x + 3\) có các nghiệm \({x_1};{x_2}\). Hãy tính giá trị của biểu thức \(A = x_1^2 + x_2^2 – 3{x_1}{x_2}\).
  2. Có bao nhiêu cặp số \(\left( {x\,;y} \right)\) nguyên thỏa mãn các điều kiện \(0 \le x \le 2020\) và \({\log _2}\left( {2x + 2} \right) + x – 3y = {8^y}\)?
  3. Cho \(\left( {x;y} \right)\) là các cặp số thỏa \(0 \le y \le 2021\) và \(3x + {x^2} – {3^{y + 1}} = {9^y}\). Tìm giá trị nhỏ nhất của biểu thức \(P = {y^3} – 12{\log _3}x + 2.\)
  4. Cho \(x,y\) là các số thực dương thỏa mãn \(\ln \frac{{x\left( {1 + y} \right)}}{{4\left( {2 – y} \right)}} = 2\left( {8 – x – 4y – xy} \right)\). Tìm giá trị nhỏ nhất của \(P = x + 3y\).
  5. Tính tổng các nghiệm của phương trình \({2021^{2021x}} + {2021^{x + 1}}.x = {2021^{{x^2}}} + {2021^x}.{x^2}\).
  6. Bất phương trình Cho bất phương trình \(\ln \frac{{{x^3} – 2{x^2} + 2}}{{{x^2} + 2}} + {x^3} – 3{x^2} \ge 0\) có tập nghiệm \(S\). Tập \(S \cap \left( { – \infty ;100} \right)\) có số phần tử nguyên là
  7. Biết rằng phương trình \({\log _2}\left( {\frac{{{x^2} + 2}}{{2x + 5}}} \right) = – {x^2} + 4x + 9\) có hai nghiệm \(x = a + b\sqrt c \) và \(x = a – b\sqrt c \) với \(a,b,c\) là các số nguyên dương. Tính tích \(a.b.c\).

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.