• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Cực trị của hàm số / Cho hàm số $y=\dfrac{-3x^2-x+5}{-x+5}$. Tổng giá trị cực đại và giá trị cực tiểu của hàm số bằng

Cho hàm số $y=\dfrac{-3x^2-x+5}{-x+5}$. Tổng giá trị cực đại và giá trị cực tiểu của hàm số bằng

Ngày 02/11/2025 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Cực trị của hàm số

Câu 12. Cho hàm số $y=\dfrac{-3x^2-x+5}{-x+5}$. Tổng giá trị cực đại và giá trị cực tiểu của hàm số bằng

A. $62$.

B. $65$.

C. $64$.

D. $59$.

Lời giải: $y^{\prime}=\dfrac{3x^2-30x}{(-x+5)^2}$.
$y^{\prime}=0\Leftrightarrow x_1=0,x_2=10$.

de thi toan online

Bài liên quan:

  1. Cho hàm số $y = -x^3 -4x^2 -4x +3$. Hàm số đạt cực tiểu tại điểm nào dưới đây?
  2. Cho hàm số $y=f(x)$ liên tục trên đoạn $[-16;32]$ và có đồ thị như hình vẽ bên. Khẳng định nào sau đây là đúng?
  3. Cho hàm số $y=\dfrac{x^2+4x+4}{-x+5}$. Gọi $A,B$ là hai điểm cực trị của đồ thị hàm số khi đó diện tích tam giác $OAB$ bằng
  4. Nhìn vào đồ thị hàm số bên, ta thấy đạt cực tiểu tại điểm

    de thi toan online

  5. Cho hàm số $f(x)$ có đạo hàm $f^{\prime}(x)=\left(x + 2\right) \left(x + 5\right)^{2}$. Số điểm cực trị của hàm số $f(x)$ là
  6. Nhìn vào đồ thị hàm số bên ta thấy giá trị cực đại là

    de thi toan online

  7. Cho hàm số $y=f(x)$ có bảng biến thiên như hình bên dưới. Điểm cực tiểu của hàm số là
  8. Cho hàm số $y = f(x) = \dfrac{ax^2 + bx + c}{dx + e}$ có bảng biến thiên bên dưới. Hàm số có giá trị cực tiểu bằng?
  9. Cho hàm số $y=\dfrac{-x^2-3x}{x+4}$. Khoảng cách giữa hai điểm cực trị của đồ thị hàm số bằng
  10. Cho hàm số $y=\dfrac{-x^2-3x-1}{-x-3}$. Đường thẳng qua hai điểm cực trị của đồ thị hàm số có phương trình
  11. Cho hàm số $y = f(x) =\dfrac{ax^2 + bx + c}{dx + e}$ có đồ thị như hình bên. Điểm cực tiểu của đồ thị hàm số là
  12. Cho hàm số $y=f(x)$ có bảng biến thiên như bên dưới. Đồ thị hàm số đạt cực đại tại điểm nào sau đây?
  13. Hàm số nào dưới đây không có cực trị ?
  14. Chứng minh rằng hàm số \(y = {x^4} – 6{x^2} + 4x + 6\) luôn luôn có 3 cực trị đồng thời gốc toạ độ O là trọng tâm của tam giác tạo bởi 3 đỉnh là 3 điểm cực trị của đồ thị hàm số.
  15. Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.