• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Cực trị của hàm số / Chào đón năm mới $2025$, Thành phố trang trí đèn led biểu tượng hình chữ $V$ được ghép từ các thanh $AB=4m$, $AC=5m$ sao cho tam giác $ABC$ vuông tại $B$

Chào đón năm mới $2025$, Thành phố trang trí đèn led biểu tượng hình chữ $V$ được ghép từ các thanh $AB=4m$, $AC=5m$ sao cho tam giác $ABC$ vuông tại $B$

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Cuc tri VDC - Trả lời ngắn

Chào đón năm mới $2025$, Thành phố trang trí đèn led biểu tượng hình chữ $V$ được ghép từ các thanh $AB=4m$, $AC=5m$ sao cho tam giác $ABC$ vuông tại $B$. Để tăng hiệu ứng, các kỹ sư đã thiết kế một chuỗi led chạy từ $B$ xuống $A$ với vận tốc $4$ $\text{m/}$ phút và một chuỗi led chạy từ $A$ lên $C$ với vận tốc $10$ $\text{m/}$ phút. Sau khi đóng nguồn điện thì cả hai chuỗi led đồng thời xuất phát. Hỏi sau bao nhiêu giây từ thời điểm đóng nguồn thì khoảng cách giữa hai điểm sáng đầu tiên của hai chuỗi led là nhỏ nhất ?

de thi toan online

Lời giải

Trả lời: 16

de thi toan online

Gọi $x$ (phút) là khoảng thời gian cả hai chuỗi led đồng thời xuất phát đến $M$ và $N$ là hai điểm sáng đầu tiên

$\Rightarrow \left\{ \begin{array}{l}

BM=4x \\

AN=10x \\

\end{array} \right.$ $\Rightarrow AM=4-4x$ với $0\le x\le 4$

Xét tam giác $ABC$ vuông tại $B$ $\Rightarrow \cos \widehat{MAN}=\dfrac{AB}{AC}=\dfrac{4}{5}$

Xét tam giác $AMN$ ta có : $M{{N}^{2}}=A{{M}^{2}}+A{{N}^{2}}-2AM.AN.\cos \widehat{MAN}$

$M{{N}^{2}}={{\left( 4-4x \right)}^{2}}+{{\left( 10x \right)}^{2}}-2.\left( 4-4x \right).10x.\dfrac{4}{5}$ $=180{{x}^{2}}-96x+16=f\left( x \right)$

Để khoảng cách giữa hai điểm sáng đầu tiên của hai chuỗi led nhỏ nhất $\Leftrightarrow M{{N}_{\min }}\Leftrightarrow M{{N}^{2}}_{\min }$

Xét $f\left( x \right)=180{{x}^{2}}-96x+16$ với $x\in \left[ 0;4 \right]$

${f}’\left( x \right)=360x-96=0\Leftrightarrow$ $x=\dfrac{4}{15}$ $\Rightarrow M{{N}^{2}}$ đạt giá trị nhỏ nhất $\Leftrightarrow x=\dfrac{4}{15}$ (phút) $=16$ (giây)

Vậy sau 16 giây thì hai điểm sáng đầu tiên của chuỗi led có khoảng cách nhỏ nhất.

Bài liên quan:

  1. Vận tốc của một tàu con thoi từ lúc cất cánh tại thời điểm $t=0\left( s \right)$ cho đến thời điểm $t=126\left( s \right)$ được cho bởi công thức $v(t)=0,001302{{t}^{3}}-0,09029{{t}^{2}}+83$ (vận tốc được tính bằng đơn vị $ft/s$ )
  2. Doanh số bán hàng của một loại sản phẩm (chục triệu đồng) trong một phiên livestream bán hàng kéo dài sáu giờ theo quy luật hàm số $f(t)=\dfrac{3t}{{{e}^{\dfrac{t}{2}}}},0\le t\le 6$ trong đó thời gian $t$ được tính bằng giờ kể từ khi bắt đầu livestream
  3. Một vật chuyển động với vận tốc $\left( m/s \right)$ được xác định bởi hàm số $f(t)=-{{t}^{3}}+3{{t}^{2}}$ với $t\ge 0$
  4. Một cửa hàng cà phê bán cà phê espresso, nhận thấy rằng lợi nhuận của cửa hàng $y$ (tính theo đơn vị triệu đồng/ngày) phụ thuộc vào giá bán $x$ (chục nghìn đồng) mỗi ly espresso
  5. Một vật chuyển động theo quy luật $s=-\dfrac{1}{2}{{t}^{3}}+6{{t}^{2}}$ với $t$ là khoảng thời gian tính từ khi vật đó bắt đầu chuyển động và $s\left( \text{m} \right)$ là quãng đường vật di chuyển được trong khoảng thời gian đó
  6. Cường độ âm thanh (dB) tại một địa điểm được đo liên tục trong 12 giờ là một hàm số $y=f(t)$ có bảng biến thiên như sau:
  7. Lát cắt ngang của một vùng đất ven biển được mô hình hóa thành một hàm số bậc ba $y=f\left( x \right)$ có đồ thị như hình vẽ
  8. Một công ty trung bình bán được 1000 ti vi màn hình phẳng mỗi tuần với giá 14 triệu đồng một chiếc
  9. Biết rằng hai điểm cực trị của đồ thị hàm số $y=\dfrac{{{x}^{2}}+2x-3}{{{x}^{2}}+1}$ cùng với điểm $I\left( -\sqrt{5};-\sqrt{5} \right)$ tạo thành một tam giác.
  10. Trong một thí nghiệm y học, người ta cấy 1000 vi khuẩn vào môi trường dinh dưỡng. bằng thực nghiệm, người ta xác định được số lượng vi khuẩn thay đổi
  11. Cho hàm số $y= f(x) = x^3+5x^2+7x+7$ đạt cực tiểu tại $x = a$, cực đại tại $x = b$. Khi đó $3a + 6b$ bằng bao nhiêu?
  12. Cho hàm số $y=\dfrac{{{x}^{2}}+x-1}{x-1}$. Tính khoảng cách giữa hai điểm cực trị của đồ thị hàm số.
  13. Cho hàm số $y=\dfrac{{{x}^{2}}+x+1}{x-1}$. Đồ thị hàm số có hai điểm cực trị là $A$ và $B$, biết điểm $I\left( a;b \right)$ là trung điểm $AB$. Tính thì $a+b.$
  14. Biết đồ thị hàm số $y=\frac{1}{4} x^{4}-(3 m+1) x^{2}+2(m+1)$ có ba điểm cực trị $A, B, C$ sao cho $\triangle A B C$ nhận gốc tọa độ $O$ làm trọng tâm. Mệnh đề nào dưới đây đúng?
  15. Cho hàm số $y=\frac{1}{3} m x^{3}-(m-1) x^{2}+3(m-2) x+2023$ với $m$ là tham số. Tìm m để hàm số có 2 cực trị

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.