• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Học Toán lớp 10 – SGK Cánh diều / Lý thuyết Bài 6: Tích vô hướng của hai vectơ – Toán 10 Cánh Diều

Lý thuyết Bài 6: Tích vô hướng của hai vectơ – Toán 10 Cánh Diều

Ngày 10/07/2022 Thuộc chủ đề:Học Toán lớp 10 – SGK Cánh diều Tag với:Chương 4: Hệ thức lượng trong tam giác. Vectơ

Bài 6: Tích vô hướng của hai vectơ – Toán 10 Cánh Diều

=======

1.1. Định nghĩa

Cho hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) khác \({\vec 0}\). Từ một điểm A tuỳ ý, vẽ các vectơ \(\overrightarrow {AB}  = \overrightarrow u \) và \(\overrightarrow {AC}  = \overrightarrow v \) (Hình cho bên dưới). Khi đó, số đo của góc BAC được gọi là số đo góc giữa hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) hay đơn giản là góc giữa hai vectơ \(\overrightarrow u \), \(\overrightarrow v \) kí hiệu là \(\left( {\overrightarrow u ,\overrightarrow v } \right)\).

Tích vô hướng của hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) là một số, kí hiệu là \(\overrightarrow u .\overrightarrow v \), được xác định bởi công thức sau:

\(\overrightarrow u .\overrightarrow v  = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.cos\left( {\overrightarrow u ,\overrightarrow v } \right)\) 

Chú ý: 

+ Quy ước rằng góc giữa hai vectơ \(\overrightarrow u \) và \(\overrightarrow 0 \) có thể nhận một giá trị tuỳ ý từ 0° đến 180°.

+ Nếu \(\left( {\overrightarrow u ,\overrightarrow v } \right) = {90^0}\) thì ta nói rằng \(\overrightarrow u \) và \(\overrightarrow v \) vuông góc với nhau, kí hiệu là \({\overrightarrow u  \bot \overrightarrow v }\) hoặc \({\overrightarrow v  \bot \overrightarrow u }\). Đặc biệt \(\overrightarrow 0 \) được coi là vuông góc với mọi vectơ.

\(\overrightarrow u  \bot \overrightarrow v  \Leftrightarrow \overrightarrow u .\overrightarrow v  = \overrightarrow 0 \)

\(\overrightarrow u .\overrightarrow u \) còn được viết là \({\overrightarrow u ^2}\). Ta có \({\overrightarrow u ^2} = \left| {\overrightarrow u } \right|.\left| {\overrightarrow u } \right|.cos{0^0} = {\left| {\overrightarrow u } \right|^2}\) 

Ví dụ: Cho hình vuông ABCD có cạnh bằng a. Tính các tích vô hướng sau: \(\overrightarrow {AB} .\overrightarrow {AD} ,\overrightarrow {AB} .\overrightarrow {AC} ,\overrightarrow {AB} .\overrightarrow {BD} \) 

Giải

Lý thuyết Bài 6: Tích vô hướng của hai vectơ - Toán 10 Cánh Diều 1

Vì \(\left( {\overrightarrow {AB} .\overrightarrow {AD} } \right) = {90^0}\) nên \(\overrightarrow {AB} .\overrightarrow {AD}  = 0\).

Hình vuông có cạnh bằng a nên có đường chéo bằng \(a\sqrt 2 \) 

Mặt khác, \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = {45^0},\left( {\overrightarrow {AB} ,\overrightarrow {B{\rm{D}}} } \right) = {135^0}\), do đó \(\overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.cos{45^0} = a.a\sqrt 2 .\frac{{\sqrt 2 }}{2} = {a^2}\), \(\overrightarrow {AB} .\overrightarrow {B{\rm{D}}}  = AB.B{\rm{D}}.cos{135^0} = a.a\sqrt 2 .\left( { – \frac{{\sqrt 2 }}{2}} \right) =  – {a^2}\) 

1.2. Tính chất

Cho 3 vecto \(\overrightarrow u ,\overrightarrow v ,\overrightarrow w \) bất kì và mọi số thực k, ta có:

\(\begin{array}{l}\overrightarrow u .\;\overrightarrow v \;\; = \overrightarrow v .\;\overrightarrow u \;\\\overrightarrow u .\;\left( {\overrightarrow v  + \overrightarrow w \;} \right)\; = \overrightarrow u .\;\overrightarrow v \; + \overrightarrow u .\;\overrightarrow w \;\\\left( {k\overrightarrow u } \right).\overrightarrow v  = k.\left( {\overrightarrow u .\;\overrightarrow v \;} \right) = \overrightarrow u .\;\left( {k\overrightarrow v \;} \right)\end{array}\)

Nhận xét

\(\begin{array}{l}\overrightarrow u .\;\left( {\overrightarrow v  – \overrightarrow w \;} \right)\; = \overrightarrow u .\;\overrightarrow v \; – \overrightarrow u .\;\overrightarrow w \\{\left( {\overrightarrow u  + \overrightarrow v } \right)^2}\;\; = {\overrightarrow u ^2} + 2\overrightarrow u .\;\overrightarrow v \; + \;{\overrightarrow v ^2};\;\;{\left( {\overrightarrow u  – \overrightarrow v } \right)^2}\;\; = {\overrightarrow u ^2} – 2\overrightarrow u .\;\overrightarrow v \; + \;{\overrightarrow v ^2}\\\left( {\overrightarrow u  + \overrightarrow v } \right)\left( {\overrightarrow u  – \overrightarrow v } \right) = {\overrightarrow u ^2} – {\overrightarrow v ^2}\end{array}\)

Ví dụ: Cho tam giác ABC. TÍnh cạnh AB theo hai cạnh còn lại và góc C

Giải

Ta có: \(A{B^2} = {\overrightarrow {AB} ^2} = {\left( {\overrightarrow {CB}  – \overrightarrow {CA} } \right)^2} = {\overrightarrow {CB} ^2} + {\overrightarrow {CA} ^2} – 2\overrightarrow {CB} .\overrightarrow {CA}  = {\overrightarrow {CB} ^2} + {\overrightarrow {CA} ^2} – 2CB.CA.\cos C\)

hay \({c^2} = {a^2} + {b^2} – 2.b.c.\cos C\)

1.3. Một số ứng dụng

a) Tính độ dài của đoạn thẳng

– Với hai điểm A, 8 phân biệt, ta có: \({\overrightarrow {AB} ^2} = {\left| {\overrightarrow {AB} } \right|^2}\).

– Do đó độ dài đoạn thẳng AB được tính như sau: \(\overrightarrow {AB}  = \sqrt {{{\overrightarrow {AB} }^2}} \). 

b) Chứng mỉnh hai đường thẳng vuông góc

– Cho hai vectơ bất kì \(\overrightarrow a \) và \(\overrightarrow b \) khác vectơ \(\overrightarrow 0 \). Ta có: \(\overrightarrow a .\overrightarrow b  = 0 \Leftrightarrow \overrightarrow a  \bot \overrightarrow b .\)

– Hai đường thẳng AB và CD vuông góc với nhau khi và chỉ khi \(\overrightarrow {AB} .\overrightarrow {C{\rm{D}}}  = 0\).

– Cũng như vậy, hai đường đường thẳng a và b vuông góc khi và chỉ khi \(\overrightarrow u .\overrightarrow v  = 0\), trong đó \(\overrightarrow u  \ne \overrightarrow 0 ,\overrightarrow v  \ne \overrightarrow 0 \), giá của vectơ \(\overrightarrow u \) song song hoặc trùng với đường thẳng a và giá của vectơ \(\overrightarrow v \) song song hoặc trùng với đường thẳng b. 

Câu 1:  Cho tam giác ABC đều cạnh a, AH là đường cao. Tính:

a) \(\overrightarrow {CB} .\overrightarrow {BA} \)

b) \(\overrightarrow {AH} .\overrightarrow {BC} \)

Hướng dẫn giải

Lý thuyết Bài 6: Tích vô hướng của hai vectơ - Toán 10 Cánh Diều 2

a) Vẽ vecto \(\overrightarrow {BD}  = \overrightarrow {CB} \). Ta có:

\((\overrightarrow {CB} ,\overrightarrow {BA} ) = (\overrightarrow {BD} ,\overrightarrow {BA} ) = \widehat {DBA} = {120^o}\)

Vậy \(\overrightarrow {CB} .\overrightarrow {BA}  = \left| {\overrightarrow {CB} } \right|.\left| {\overrightarrow {BA} } \right|\cos (\overrightarrow {CB} ,\overrightarrow {BA} ) = a.a.\cos {120^o} = {a^2}.\left( { – \frac{1}{2}} \right) =  – \frac{{{a^2}}}{2}.\)

b) Vì \(AH \bot BC\) nên \((\overrightarrow {AH} ,\overrightarrow {BC} ) = {90^o}\), suy ra \(\cos (\overrightarrow {AH} ,\overrightarrow {BC} ) = \cos {90^o} = 0.\)

Vậy \(\overrightarrow {AH} .\overrightarrow {BC}  = \left| {\overrightarrow {AH} } \right|.\left| {\overrightarrow {BC} } \right|.\cos (\overrightarrow {AH} ,\overrightarrow {BC} ) = 0.\)

Câu 2:  Chứng minh rằng với hai vecto bất kì \(\overrightarrow a ,\overrightarrow b \), ta có:

\(\begin{array}{l}{(\overrightarrow a  + \overrightarrow b )^2} = {\overrightarrow a ^2} + 2\overrightarrow a .\overrightarrow b  + {\overrightarrow b ^2}\\{(\overrightarrow a  – \overrightarrow b )^2} = {\overrightarrow a ^2} – 2\overrightarrow a .\overrightarrow b  + {\overrightarrow b ^2}\\(\overrightarrow a  – \overrightarrow b )(\overrightarrow a  + \overrightarrow b ) = {\overrightarrow a ^2} – {\overrightarrow b ^2}\end{array}\)

Hướng dẫn giải

\(\begin{array}{l}{ + \, (\overrightarrow a  + \overrightarrow b )^2} = (\overrightarrow a  + \overrightarrow b )(\overrightarrow a  + \overrightarrow b )\\ = \overrightarrow a .(\overrightarrow a  + \overrightarrow b ) + \overrightarrow b .(\overrightarrow a  + \overrightarrow b ) \\= {\overrightarrow a ^2} + \overrightarrow a .\overrightarrow b  + \overrightarrow b .\overrightarrow a  + {\overrightarrow b ^2} \\= {\overrightarrow a ^2} + 2\overrightarrow a .\overrightarrow b  + {\overrightarrow b ^2}.\\  + \, {(\overrightarrow a  – \overrightarrow b )^2} =(\overrightarrow a  – \overrightarrow b )(\overrightarrow a  – \overrightarrow b )\\ = \overrightarrow a .(\overrightarrow a  – \overrightarrow b ) – \overrightarrow b .(\overrightarrow a  – \overrightarrow b ) \\= {\overrightarrow a ^2} – \overrightarrow a .\overrightarrow b  – \overrightarrow b .\overrightarrow a  + {\overrightarrow b ^2} \\= {\overrightarrow a ^2} – 2\overrightarrow a .\overrightarrow b  + {\overrightarrow b ^2}. \\ + \, (\overrightarrow a  – \overrightarrow b )(\overrightarrow a  + \overrightarrow b ) \\= \overrightarrow a .(\overrightarrow a  – \overrightarrow b ) + \overrightarrow b .(\overrightarrow a  – \overrightarrow b ) \\= {\overrightarrow a ^2} – \overrightarrow a .\overrightarrow b  + \overrightarrow b .\overrightarrow a  – {\overrightarrow b ^2} \\= {\overrightarrow a ^2} – {\overrightarrow b ^2}.\end{array}\)

 

============

Thuộc chủ đề: Chương 4: Hệ thức lượng trong tam giác. Vectơ

Bài liên quan:

  1. Phương pháp Chứng minh đẳng thức vectơ
  2. Lý thuyết Bài tập cuối chương 4 – Toán 10 Cánh Diều
  3. Lý thuyết Bài 5: Tích của một số với một vectơ – Toán 10 Cánh Diều
  4. Lý thuyết Bài 4: Tổng và hiệu của hai vectơ – Toán 10 Cánh Diều
  5. Lý thuyết Bài 3: Khái niệm vectơ – Toán 10 Cánh Diều
  6. Lý thuyết Bài 2: Giải tam giác – Toán 10 Cánh Diều
  7. Lý thuyết Bài 1: Giá trị lượng giác của một góc từ 0˚ đến 180˚. Định lí côsin và định lí sin trong tam giác – Toán 10 Cánh Diều
  8. Trả lời câu hỏi trong Bài tập cuối chương IV trang 99 – Toán 10 Cánh Diều
  9. Trả lời câu hỏi trong bài 6 Tích vô hướng của hai vectơ – Toán 10 Cánh Diều
  10. Trả lời câu hỏi trong bài 5 Tích của một số với một vectơ – Toán 10 Cánh Diều
  11. Trả lời câu hỏi trong bài 4 Tổng và hiệu của hai vectơ – Toán 10 Cánh Diều
  12. Trả lời câu hỏi trong bài 3 Khái niệm vectơ – Toán 10 Cánh Diều
  13. Trả lời câu hỏi trong bài 2 Trả lời câu hỏi trong tam giác. Tính diện tích tam giác – Toán 10 Cánh Diều
  14. Trả lời câu hỏi trong bài 1 Giá trị lượng giác của một góc từ 0 đến 180. Định lí côsin và định lí sin trong tam giác – Toán 10 Cánh Diều

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Học Toán lớp 10 – SGK Cánh diều

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.