• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải bài tập Toán 10 - Cánh diều / Giải bài tập Bài 2: Biểu thức tọa độ của các phép toán vectơ (C7 – Toán 10 Cánh diều)

Giải bài tập Bài 2: Biểu thức tọa độ của các phép toán vectơ (C7 – Toán 10 Cánh diều)

Ngày 27/01/2023 Thuộc chủ đề:Giải bài tập Toán 10 - Cánh diều Tag với:GBT Chuong 7 Toan 10 - CD

Giải bài tập Bài 2: Biểu thức tọa độ của các phép toán vectơ (C7 – Toán 10 Cánh diều)

0000000000000000000000

Giải bài tập Bài 1 trang 72 SGK Toán 10 Cánh diều tập 2

Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow a  = \left( { – 1;2} \right),\overrightarrow b  = \left( {3;1} \right),\overrightarrow c  = \left( {2; – 3} \right)\).

a) Tìm tọa độ của vectơ \(\overrightarrow u  = 2\overrightarrow a  + \overrightarrow b  – 3\overrightarrow c \)

b) Tìm tọa độ của vectơ \(\overrightarrow x \) sao cho \(\overrightarrow x  + 2\overrightarrow b  = \overrightarrow a  + \overrightarrow c \)

Phương pháp giải

Cho hai vectơ \(\overrightarrow u  = \left( {{x_1},{y_1}} \right)\) và \(\overrightarrow v  = \left( {{x_2},{y_2}} \right)\) thì: \(\overrightarrow u  + \overrightarrow v  = \left( {{x_1} + {x_2};{y_1} + {y_2}} \right)\), \(\overrightarrow u  – \overrightarrow v  = \left( {{x_1} – {x_2};{y_1} – {y_2}} \right)\),\(k\overrightarrow u  = \left( {k{x_1},k{y_1}} \right),\left( {k \in \mathbb{R}} \right)\)

Hướng dẫn giải

a) Tọa độ vectơ \(\overrightarrow u  = \left( {2.\left( { – 1} \right) + 3 – 3.2;2.2 + 1 – 3.\left( { – 3} \right)} \right) = \left( { – 5;14} \right)\)

b) Do \(\overrightarrow x  + 2\overrightarrow b  = \overrightarrow a  + \overrightarrow c  \Leftrightarrow \overrightarrow x  = \overrightarrow a  + \overrightarrow c  – 2\overrightarrow b  = \left( { – 1 + 2 – 2.3;2 + \left( { – 3} \right) – 2.1} \right) = \left( { – 5; – 3} \right)\)

Vậy \(\overrightarrow x  = \left( { – 5; – 3} \right)\)

Giải bài tập Bài 2 trang 72 SGK Toán 10 Cánh diều tập 2

Trong mặt phẳng toạ độ Oxy, cho A(-2;3), B(4; 5), C(2;- 3).

a) Chứng minh ba điểm A, B, C không thẳng hàng.

b) Tìm toạ độ trọng tâm G của tam giác ABC.

c) Giải tam giác ABC (làm tròn các kết quả đến hàng đơn vị).

Phương pháp giải

a) Hai vectơ \(\overrightarrow u  = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v  = \left( {{x_2},{y_2}} \right)\) (\(\overrightarrow v  \ne 0\) ) cùng phương khi và chỉ khi có một số thực k sao cho \({x_1}{\rm{ =  }}k{x_2}\) và \({y_1} = {\rm{ }}k{y_2}\) .

b) G là trọng tâm tam giác ABC thì tọa độ G là: \(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)

c) Tính tất cả các cạnh và các góc của tam giác ABC:

Nếu \(\overrightarrow a  = \left( {x;y} \right) \Rightarrow \left| {\overrightarrow a } \right| = \sqrt {{x^2} + {y^2}} \)

Với hai vectơ \(\overrightarrow u  = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v  = \left( {{x_2},{y_2}} \right)\)đều khác vectơ không, ta có:

+ \(\overrightarrow u \) và \(\overrightarrow v \) vuông góc với nhau khi và chỉ khi \({x_1}.{x_2} + {y_1}.{y_2} = 0\)

+ \(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}} = \frac{{{x_1}.{x_2} + {y_1}.{y_2}}}{{\sqrt {x_1^2 + y_1^2} .\sqrt {x_2^2 + y_2^2} }}\)

Hướng dẫn giải

a) Ta có: \(\overrightarrow {AB}  = \left( {6;2} \right),\overrightarrow {AC}  = \left( {4; – 6} \right)\)

Do \(\overrightarrow {AB}  \ne k.\overrightarrow {AC} \) nên A, B, C không thẳng hàng

b) Do G là trọng tâm tam giác ABC nên \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3} = \frac{{ – 2 + 4 + 2}}{3} = \frac{4}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3} = \frac{{3 + 5 + \left( { – 3} \right)}}{3} = \frac{5}{3}\end{array} \right.\)

Vậy \(G\left( {\frac{4}{3};\frac{5}{3}} \right)\)

c) Ta có: \(\overrightarrow {AB}  = \left( {6;2} \right),\overrightarrow {AC}  = \left( {4; – 6} \right),\overrightarrow {BC}  = \left( { – 2; – 8} \right)\)

Suy ra: \(\begin{array}{l}AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{6^2} + {2^2}}  = \sqrt {40} \\AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{4^2} + {{\left( { – 6} \right)}^2}}  = \sqrt {52} \\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( { – 2} \right)}^2} + {{\left( { – 8} \right)}^2}}  = \sqrt {68} \end{array}\)

Ta có:

\(\begin{array}{l}\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{6.4 + 2.\left( { – 6} \right)}}{{\sqrt {{6^2} + {2^2}} .\sqrt {{4^2} + {{\left( { – 6} \right)}^2}} }} \approx 0,263 \Rightarrow \widehat {BAC} \approx {74^o}\\\cos \widehat {ABC} = \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\left( { – 6} \right).\left( { – 2} \right) + \left( { – 2} \right).\left( { – 8} \right)}}{{\sqrt {{{\left( { – 6} \right)}^2} + {{\left( { – 2} \right)}^2}} .\sqrt {{{\left( { – 2} \right)}^2} + {{\left( { – 8} \right)}^2}} }} \approx 0,47 \Rightarrow \widehat {ABC} \approx {62^o}\end{array}\)
Áp dụng tính chất tổng ba góc trong một tam giác ta có: \(\widehat {ACB} \approx {180^o} – {74^o} – {62^o} \approx {44^o}\)

Giải bài tập Bài 3 trang 72 SGK Toán 10 Cánh diều tập 2

Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có trung điểm các cạnh BC, CA, AB tương ứng là M(2 ; 0), N4 ; 2), P(1 ; 3).

a) Tìm toạ độ các điểm A, B, C.

b) Trọng tâm hai tam giác ABC và MNP có trùng nhau không? Vì sao?

Phương pháp giải

a) Trung điểm M của đoạn thẳng AB có tọa độ là: \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)

b) Tìm trọng tâm của hai tam giác bằng công thức tính trọng tâm: G là trọng tâm tam giác ABC thì tọa độ G là: \(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)

Hướng dẫn giải

a) Do M, N, P là trung điểm của các cạnh BC, CA, AB nên:

\(\left\{ \begin{array}{l}\frac{{{x_B} + {x_C}}}{2} = {x_M}\\\frac{{{x_B} + {x_A}}}{2} = {x_P}\\\frac{{{x_A} + {x_C}}}{2} = {x_N}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} + {x_C} = 4\\{x_B} + {x_A} = 2\\{x_A} + {x_C} = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 3\\{x_B} =  – 1\\{x_C} = 5\end{array} \right.\)  và  \(\left\{ \begin{array}{l}\frac{{{y_B} + {y_C}}}{2} = {y_M}\\\frac{{{y_B} + {y_A}}}{2} = {y_P}\\\frac{{{y_A} + {y_C}}}{2} = {y_N}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y_B} + {y_C} = 0\\{y_B} + {y_A} = 4\\{y_A} + {y_C} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y_A} = 5\\{y_B} =  – 1\\{y_C} = 1\end{array} \right.\)

Vậy \(A\left( {3;5} \right),B\left( { – 1; – 1} \right),C\left( {5;1} \right)\)

b) Trọng tâm tam giác ABC có tọa độ là: \(\left\{ \begin{array}{l}\frac{{{x_A} + {x_B} + {x_C}}}{3} = \frac{{3 + \left( { – 1} \right) + 5}}{3} = \frac{7}{3}\\\frac{{{y_A} + {y_B} + {y_C}}}{3} = \frac{{5 + \left( { – 1} \right) + 1}}{3} = \frac{5}{3}\end{array} \right.\)

Trọng tâm tam giác MNP có tọa độ là: \(\left\{ \begin{array}{l}\frac{{{x_M} + {x_N} + {x_P}}}{3} = \frac{{2 + 4 + 1}}{3} = \frac{7}{3}\\\frac{{{y_M} + {y_N} + {y_P}}}{3} = \frac{{0 + 2 + 3}}{3} = \frac{5}{3}\end{array} \right.\)

Vậy trọng tâm của 2 tam giác ABC và MNP là trùng nhau vì có cùng tọa độ.

Giải bài tập Bài 4 trang 72 SGK Toán 10 Cánh diều tập 2

Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có A(2;4), B(-1;1), C(-8; 2).

a) Tính số đo góc ABC (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).

b) Tính chu vi của tam giác ABC.

c) Tìm toạ độ điểm M trên đường thẳng BC sao cho diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM.

Phương pháp giải

a) Với hai vectơ \(\overrightarrow u  = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v  = \left( {{x_2},{y_2}} \right)\)đều khác vectơ không, ta có:

– \(\overrightarrow u \) và \(\overrightarrow v \) vuông góc với nhau khi và chỉ khi \({x_1}.{x_2} + {y_1}.{y_2} = 0\)

– \(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}} = \frac{{{x_1}.{x_2} + {y_1}.{y_2}}}{{\sqrt {x_1^2 + y_1^2} .\sqrt {x_2^2 + y_2^2} }}\)

b) Chu vi tam giác bằng tổng độ dài 3 cạnh

c) Trung điểm M của đoạn thẳng AB có tọa độ là: \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)

Hướng dẫn giải

a) Ta có: \(\overrightarrow {BC}  = \left( { – 7;1} \right),\overrightarrow {BA}  = \left( {3;3} \right)\)

\(\cos \widehat {ABC} = \left( {\overrightarrow {BC} ,\overrightarrow {BA} } \right) = \frac{{\left( { – 7} \right).3 + 1.3}}{{\sqrt {{{\left( { – 7} \right)}^2} + {1^2}} .\sqrt {{3^2} + {3^2}} }} =  – \frac{3}{5} \Rightarrow \widehat {ABC} \approx {126^o}\)

b) Ta có: \(\overrightarrow {BC}  = \left( { – 7;1} \right),\overrightarrow {BA}  = \left( {3;3} \right),\overrightarrow {AC}  = \left( { – 10; – 2} \right)\)

Suy ra: \(\begin{array}{l}AB = \left| {\overrightarrow {BA} } \right| = \sqrt {{3^2} + {3^2}}  = 3\sqrt 2 \\AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{{\left( { – 10} \right)}^2} + {{\left( { – 2} \right)}^2}}  = \sqrt {104} \\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( { – 7} \right)}^2} + {1^2}}  = \sqrt {50} \end{array}\)

Vậy chu vi tam giác ABC là: \({P_{ABC}} = 2\sqrt {26}  + 8\sqrt 2 \)

c) Để diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM thì M phải là trung điểm BC.

Vậy tọa độ điểm M là: \(\left\{ \begin{array}{l}\frac{{{x_B} + {x_C}}}{2} = \frac{{ – 9}}{2}\\\frac{{{y_B} + {y_C}}}{2} = \frac{3}{2}\end{array} \right.\). Vậy \(M\left( {\frac{{ – 9}}{2};\frac{3}{2}} \right)\)

Giải bài tập Bài 5 trang 72 SGK Toán 10 Cánh diều tập 2

Cho ba điểm A(1; 1), B(4;3) và C(0;- 2).

a) Chứng minh ba điểm A, B, C không thẳng hàng.

b) Tìm toạ độ điểm D sao cho tứ giác ABCD là hình thang có AB // CD và CD= 2AB.

Phương pháp giải

a) Hai vectơ \(\overrightarrow u  = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v  = \left( {{x_2},{y_2}} \right)\) (\(\overrightarrow v  \ne 0\) ) cùng phương khi và chỉ khi có một số thực k sao cho \({x_1}{\rm{ =  }}k{x_2}\) và \({y_1} = {\rm{ }}k{y_2}\) .

b) Tứ giác ABCD là hình thang có AB // CD và CD= 2AB thì 2 vectơ \(\overrightarrow {AB} ,\overrightarrow {CD} \) phải cùng phương và độ lớn vectơ \(\overrightarrow {CD}  = 2\overrightarrow {AB} \)

Hướng dẫn giải

a) Ta có: \(\overrightarrow {AB}  = \left( {3;2} \right),\overrightarrow {AC}  = \left( { – 1; – 3} \right)\)

Do \(\overrightarrow {AB}  \ne k.\overrightarrow {AC} \) nên A, B, C không thẳng hàng

b) Giả sử tọa độ điểm D là:\(D\left( {{x_D},{y_D}} \right)\)

Ta có: \(\overrightarrow {CD}  = \left( {{x_D} – 0;{y_D} – \left( { – 2} \right)} \right) = \left( {{x_D};{y_D} + 2} \right)\)

Để tứ giác ABCD là hình thang có AB // CD và CD= 2AB thì \(\overrightarrow {CD}  = 2\overrightarrow {AB} \)

Vậy nên \(\overrightarrow {CD}  = 2\overrightarrow {AB}  \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 2.3\\{y_D} + 2 = 2.2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 6\\{y_D} = 2\end{array} \right.\)

Vậy tọa độ D là: \(D\left( {6;2} \right)\)

Giải bài tập Bài 6 trang 72 SGK Toán 10 Cánh diều tập 2

Chứng minh khẳng định sau: Hai vectơ \(\overrightarrow u  = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v  = \left( {{x_2},{y_2}} \right)\) (\(\overrightarrow v  \ne 0\) ) cùng phương khi và chỉ khi có một số thực k sao cho \({x_1}{\rm{ =  }}k{x_2}\) và \({y_1} = {\rm{ }}k{y_2}\) .

Phương pháp giải

Hai vectơ cùng phương thì tồn tại một số \(k\left( {k \in \mathbb{R}} \right)\) sao cho vectơ này bằng \(k\) lần vectơ kia.

Hướng dẫn giải

Để hai vectơ \(\overrightarrow u  = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v  = \left( {{x_2},{y_2}} \right)\) (\(\overrightarrow v  \ne 0\) ) cùng phương thì phải tồn tại một số \(k\left( {k \in \mathbb{R}} \right)\) sao cho \(\overrightarrow u  = k.\overrightarrow v  \Leftrightarrow \left\{ \begin{array}{l}{x_1} = k{x_2}\\{y_1} = k{y_2}\end{array} \right.\) ( ĐPCM)

Giải bài tập Bài 7 trang 72 SGK Toán 10 Cánh diều tập 2

Một vật đồng thời bị ba lực tác động: lực tác động thứ nhất \(\overrightarrow {{F_1}} \) có độ lớn là 1 500 N, lực tác động thứ hai\(\overrightarrow {{F_2}} \) , có độ lớn là 600 N, lực tác động thứ ba\(\overrightarrow {{F_3}} \) , có độ lớn là 800 N. Các lực này được biểu diễn bằng những vectơ như Hình 23, với \(\left( {\overrightarrow {{F_1}} ,{\rm{ }}\overrightarrow {{F_2}} } \right)\) = 30°, \(\left( {\overrightarrow {{F_1}} ,{\rm{ }}\overrightarrow {{F_3}} } \right)\)= 45° và \(\left( {\overrightarrow {{F_2}} ,{\rm{ }}\overrightarrow {{F_3}} } \right)\)= 75°. Tính độ lớn lực tổng hợp tác động lên vật (làm tròn kết quả đến hàng đơn vị).

Giải bài tập Bài 2: Biểu thức tọa độ của các phép toán vectơ (C7 – Toán 10 Cánh diều) 1

Phương pháp giải

Chọn hệ trục tọa độ Oxy như hình vẽ

Giải bài tập Bài 2: Biểu thức tọa độ của các phép toán vectơ (C7 – Toán 10 Cánh diều) 2

Hướng dẫn giải

Ta có: \(\overrightarrow {{F_1}}  = \left( {1500;0} \right)\)

Do \(\;\left( {\overrightarrow {{F_1}} ,{\rm{ }}\overrightarrow {{F_2}} } \right) = 30^\circ \) nên tọa độ của \(\overrightarrow {{F_2}} \)là: \(\overrightarrow {{F_2}}  = \left( {600.\cos {{30}^o};600.\sin {{30}^o}} \right) = \left( {300\sqrt 3 ;300} \right)\)

Do \(\left( {\overrightarrow {{F_1}} ,{\rm{ }}\overrightarrow {{F_3}} } \right) = {45^o}\) nên tọa độ của \(\overrightarrow {{F_3}} \)là: \(\overrightarrow {{F_3}}  = \left( {800.\cos {{45}^o}; – 800.\sin {{45}^o}} \right) = \left( {400\sqrt 2 ; – 400\sqrt 2 } \right)\)

Do đó, lực \(\overrightarrow F \) tổng hợp các lực tác động lên vật có tọa độ là: \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \left( {1500 + 300\sqrt 3  + 400\sqrt 2 ;300 – 400\sqrt 2 } \right)\)

Độ lớn lực tổng hợp \(\overrightarrow F \) tác động lên vật là: \(\left| {\overrightarrow F } \right| = \sqrt {{{\left( {1500 + 300\sqrt 3  + 400\sqrt 2 } \right)}^2} + {{\left( {300 – 400\sqrt 2 } \right)}^2}}  \approx 2599\left( N \right)\)

Bài liên quan:

  1. Giải bài tập Bài tập cuối chương 7 – Toán 10 Cánh diều
  2. Giải bài tập  Bài 6: Ba đường conic (C7 – Toán 10 Cánh diều)
  3. Giải bài tập Bài 5: Phương trình đường tròn (C7 – Toán 10 Cánh diều)
  4. Giải bài tập Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (C7 – Toán 10 Cánh diều)
  5. Giải bài tập Bài 3: Phương trình đường thẳng (C7 – Toán 10 Cánh diều)
  6. Giải bài tập Bài 1: Tọa độ của vectơ (C7 – Toán 10 Cánh diều)

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải bài tập Toán lớp 10 – Sách Cánh diều

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.