• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Tổ hợp / Với các chữ số \(1;\;2;\;3;\;4;\;5\) có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau trong đó hai chữ số \(2;\;3\) không đứng cạnh nhau?

Với các chữ số \(1;\;2;\;3;\;4;\;5\) có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau trong đó hai chữ số \(2;\;3\) không đứng cạnh nhau?

Ngày 12/11/2022 Thuộc chủ đề:Trắc nghiệm Tổ hợp Tag với:Trac nghiem phep dem

Với các chữ số \(2;\;3;\;4;\;5;\;6\) có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau trong đó hai chữ số \(2;\;3\) không đứng cạnh nhau?

A. 120
B. 96
C. 48
D. 72

Số cần tìm có dạng \(\overline {abcde} \).

Ta xét có bao nhiêu số dạng \(\overline {abcde} \) lập từ các chữ số \(2,3,4,5,6\) :

– Chọn a : có 5 cách

– Chọn b : có 4 cách

– Chọn c : có 3 cách

– Chọn d : có 2 cách

– Chọn e : có 1 cách

Có \(5 \times 4 \times 3 \times 2 \times 1 = 120\) số lập từ 5 chữ số trên.

Ta xét có bao nhiêu số dạng \(\overline {abcde} \) lập từ các chữ số \(2,3,4,5,6\), mà chữ số 2 và 3 đứng cạnh nhau.

Nhận xét : có 4 vị trí gần nhau là \(\overline {ab} ,\,\,\overline {\,bc\,\,} \,,\,\,\,\overline {cd} ,\,\,\,\overline {de} \).

Với mỗi vị trí đứng gần nhau, chữ số 2 có thể đứng trước hoặc sau chữ số 3, vậy có 2 cách sắp xếp vị trí cho 2 và 3.

Với 3 vị trí còn lại để xếp các chữ số 4, 5, 6.

– Chữ số 4 có 3 cách xếp

– Chữ số 5 có 2 cách xếp

– Chữ số 6 có 1 cách xếp

Vậy sẽ có \(3 \times 2\, \times 1 = 6\) cách để xếp 3 chữ số 4, 5, 6.

Vậy có tất cả : \(4 \times 2 \times 6 = 48\) số dạng \(\overline {abcde} \) lập từ các chữ số \(2,3,4,5,6\), mà chữ số 2 và 3 đứng cạnh nhau.

Số các số thõa mãn yêu cầu bài là : \(120 – 48 = 72\)(số).

Bài liên quan:

  1. Có bao nhiêu số tự nhiên có 6 chữ số khác nhau sao cho trong mỗi số có đúng 3 chữ số chẵn và 3 chữ số lẻ?
  2. Từ các số 0,1,2,3,5,6,8 có thể lập được bao nhiêu số tự nhiên mà mỗi số có 5 chữ số khác nhau chia hết chia 5 và luôn có số 1?
  3. Cho các chữ số \(0;\,1;\,2;\,3;\,4;\,5;\,6\). Từ các chữ số đã cho lập được bao nhiêu số chẵn có năm chữ số và các chữ số phải khác nhau.
  4. Với các chữ số \(0,2,3,5,6,7,9\). Lập được bao nhiêu số có \(10\) chữ số mà trong mỗi số chữ số \(5\) có mặt đúng 3 lần, chữ số \(6\) có mặt đúng 2 lần và các chữ số khác, mỗi chữ số có mặt đúng 1 lần?
  5. Đội văn nghệ của một nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C . Cần chọn ngẫu nhiên 5 học sinh từ đội văn nghệ đó để biểu diễn trong buổi lễ 20 tháng 11. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn và có ít nhất 2 học sinh lớp 12A?
  6. Hai tổ chuyên môn của một trường trung học phồ thông có 9 giáo viên nam và 13 giáo viên nữ trong đó có đúng 2 cặp vợ chồng. Hỏi có bao nhiêu cách chọn ra 5 người trong số 22 người đó nhưng không có cặp vợ chồng nào?
  7. Từ tập hợp số {1; 2; 3; 4; 5; 6; 7; 8; 9} có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau trong đó luôn có mặt 2 chữ số chẳn và 2 chữ số lẻ?
  8. Từ các số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên mà mỗi số có 6 chữ số khác nhau và chữ số 3 đứng cạnh chữ số 4?
  9. 60 câu trắc nghiệm tổng hợp Phép đếm – Đại số 11

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.