• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Khối đa diện

Đề: Có thể chia hình lập phương thành bao biêu tứ diện bằng nhau?

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trăc nghiệm khối đa diện nhận biết

Câu hỏi: Có thể chia hình lập phương thành bao biêu tứ diện bằng nhau? A. Hai B. Vô số C. Bốn D. Sáu Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài. Đáp án đúng: B … [Đọc thêm...] vềĐề: Có thể chia hình lập phương thành bao biêu tứ diện bằng nhau?

Đề: Hình mười hai mặt đều có bao nhiêu cạnh?

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trăc nghiệm khối đa diện nhận biết

Câu hỏi: Hình mười hai mặt đều có bao nhiêu cạnh? A. Mười hai B. Mười sáu C. Hai mươi D. Ba mươi Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài. Đáp án đúng: D … [Đọc thêm...] vềĐề: Hình mười hai mặt đều có bao nhiêu cạnh?

Đề: Mỗi đỉnh của bát diện đều là đỉnh chung của bao nhiêu cạnh?

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trăc nghiệm khối đa diện nhận biết

Câu hỏi: Mỗi đỉnh của bát diện đều là đỉnh chung của bao nhiêu cạnh? A. 3 B. 5 C. 8 D. 4 Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài. Đáp án đúng: D Ta có hình vẽ hình … [Đọc thêm...] vềĐề: Mỗi đỉnh của bát diện đều là đỉnh chung của bao nhiêu cạnh?

Đề: Hình lập phương có bao nhiêu cạnh?

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trăc nghiệm khối đa diện nhận biết

Câu hỏi: Hình lập phương có bao nhiêu cạnh? A. 8 B. 12 C. 16 D. 10 Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài. Đáp án đúng: B ====== Xem lý thuyết Khái niệm … [Đọc thêm...] vềĐề: Hình lập phương có bao nhiêu cạnh?

Đề: Cho hình chóp tứ giác đều S.ABCD có thể tích \(V = \frac{{\sqrt 2 }}{6}.\) Gọi M  là trung điểm của cạnh SB. Biết \(SB\perp SD\). Tính khoảng cách d từ điểm B đến mặt phẳng (MAC).

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp tứ giác đều S.ABCD có thể tích \(V = \frac{{\sqrt 2 }}{6}.\) Gọi M  là trung điểm của cạnh SB. Biết \(SB\perp SD\). Tính khoảng cách d từ điểm B đến mặt phẳng (MAC). A. \(d = \frac{1}{2}.\) B. \(d = \frac{2}{\sqrt{3}}.\) C. \(d = \frac{3}{4}.\) D. \(d = \frac{1}{\sqrt{2}}.\) … [Đọc thêm...] vềĐề: Cho hình chóp tứ giác đều S.ABCD có thể tích \(V = \frac{{\sqrt 2 }}{6}.\) Gọi M  là trung điểm của cạnh SB. Biết \(SB\perp SD\). Tính khoảng cách d từ điểm B đến mặt phẳng (MAC).

Đề: Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại A, BC=2a, tam giác SBC là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính khoảng cách d giữa hai đường thẳng SA và BC.

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại A, BC=2a, tam giác SBC là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính khoảng cách d giữa hai đường thẳng SA và BC. A. \(d = \frac{{a\sqrt 6 }}{2}\) B. \(d = \frac{{a\sqrt 3 }}{2}\) C. \(d =a\sqrt{6}\) D. \(d … [Đọc thêm...] vềĐề: Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại A, BC=2a, tam giác SBC là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính khoảng cách d giữa hai đường thẳng SA và BC.

Đề: Cho lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Biết thể tích của khối lăng trụ là \(\frac{{{a^3}\sqrt 3 }}{4}.\) Khoảng cách giữa hai đường thẳng AA’ và BC là:

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Biết thể tích của khối lăng trụ là \(\frac{{{a^3}\sqrt 3 }}{4}.\) Khoảng cách giữa hai đường thẳng AA’ và BC là: A. \(\frac{{2a}}{3}\)  B. … [Đọc thêm...] vềĐề: Cho lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Biết thể tích của khối lăng trụ là \(\frac{{{a^3}\sqrt 3 }}{4}.\) Khoảng cách giữa hai đường thẳng AA’ và BC là:

Đề: Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, D là trung điểm BC. Biết SAD là tam giác đều và mặt phẳng (SAD) vuông góc với mặt phẳng (ABC). Tính khoảng cách từ C đến mặt phẳng (SAB).

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, D là trung điểm BC. Biết SAD là tam giác đều và mặt phẳng (SAD) vuông góc với mặt phẳng (ABC). Tính khoảng cách từ C đến mặt phẳng (SAB). A. \(\frac{{6\sqrt {13} a}}{{13}}\)   B. \(\frac{{6\sqrt {13} a}}{7}\) C.  \(\frac{{4\sqrt … [Đọc thêm...] vềĐề: Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, D là trung điểm BC. Biết SAD là tam giác đều và mặt phẳng (SAD) vuông góc với mặt phẳng (ABC). Tính khoảng cách từ C đến mặt phẳng (SAB).

Đề: Cho hình chóp S ABCD. có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc của S lên mặt phẳng ABCD là điểm H thuộc cạnh AB sao cho \(HB = 2HA.\) Cạnh SC tạo với mặt đáy (ABCD) một góc bằng \({60^o}.\) Tính khoảng cách d giữa hai đường thẳng AD và SC. 

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp S ABCD. có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc của S lên mặt phẳng ABCD là điểm H thuộc cạnh AB sao cho \(HB = 2HA.\) Cạnh SC tạo với mặt đáy (ABCD) một góc bằng \({60^o}.\) Tính khoảng cách d giữa hai đường thẳng AD và SC.  A. \(d = 3a\sqrt {\frac{{13}}{{129}}} .\) B. \(d = \frac{4}{3}a\sqrt … [Đọc thêm...] vềĐề: Cho hình chóp S ABCD. có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc của S lên mặt phẳng ABCD là điểm H thuộc cạnh AB sao cho \(HB = 2HA.\) Cạnh SC tạo với mặt đáy (ABCD) một góc bằng \({60^o}.\) Tính khoảng cách d giữa hai đường thẳng AD và SC. 

Đề: Cho tứ diện ABCD có AD vuông góc mặt phẳng (ABC); AC=AD=4; AB=3; BC=5. Tính khoảng cách từ A đến mặt phẳng (BCD).

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho tứ diện ABCD có AD vuông góc mặt phẳng (ABC); AC=AD=4; AB=3; BC=5. Tính khoảng cách từ A đến mặt phẳng (BCD). A. \(d\left( {A,(BCD)} \right) = \frac{6}{{\sqrt {34} }}\) B. \(d\left( {A,(BCD)} \right) = \frac{{12}}{{\sqrt {34} }}\) C. \(d\left( {A,(BCD)} \right) = \frac{{4}}{{\sqrt {34} }}\) D. \(d\left( {A,(BCD)} \right) = \frac{{3}}{{\sqrt {34} }}\) … [Đọc thêm...] vềĐề: Cho tứ diện ABCD có AD vuông góc mặt phẳng (ABC); AC=AD=4; AB=3; BC=5. Tính khoảng cách từ A đến mặt phẳng (BCD).

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 29
  • Trang 30
  • Trang 31
  • Trang 32
  • Trang 33
  • Trang 34
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.