• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải sách bài tập toán 10 – Cánh diều / Giải SBT Bài 4 Chương 6 – SBT Toán 10 CÁNH DIỀU

Giải SBT Bài 4 Chương 6 – SBT Toán 10 CÁNH DIỀU

Ngày 17/03/2023 Thuộc chủ đề:Giải sách bài tập toán 10 – Cánh diều Tag với:Giai SBT Toan 10 chuong 6 CD

GIẢI CHI TIẾT Giải SBT Bài 4 Chương 6 – SBT Toán 10 CÁNH DIỀU
===========

Giải bài 20 trang 41 SBT Toán 10 Cánh diều tập 2 – CD

Tung một đồng xu hai lần liên tiếp

a) Xác suất của biến cố “Kết quả của hai lần tung là khác nhau” là:

A. \(\frac{1}{2}\)             B. \(\frac{1}{4}\)             C. \(\frac{3}{4}\)                  D. \(\frac{1}{3}\)

b) Xác suất của biến cố “Hai lần tung đều xuất hiện mặt sấp là:

A. \(\frac{1}{2}\)             B. \(\frac{1}{4}\)             C. \(\frac{3}{4}\)                  D. \(\frac{1}{3}\)

c) Xác suất của biến cố “Lần thứ nhất xuất hiện mặt sấp” là:

A. \(\frac{1}{2}\)             B. \(\frac{1}{4}\)             C. \(\frac{3}{4}\)                  D. \(\frac{1}{3}\)

d) Xác suất của biến cố “Mặt sấp xuất hiện đúng một lần” là:

A. \(\frac{1}{2}\)             B. \(\frac{1}{4}\)             C. \(\frac{3}{4}\)                  D. \(\frac{1}{3}\)

Hướng dẫn giải chi tiết Bài 20

Phương pháp giải

Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega  \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)

Lời giải chi tiết

Tung đồng xu 2 lần liên tiếp

\(\begin{array}{l} \Rightarrow \Omega  = \{ SN;SS;NS;NN\} \\ \Rightarrow n\left( \Omega  \right) = 4\end{array}\)

a) “Kết quả của hai lần tung là khác nhau” \( \Rightarrow A = \{ SN;NS\}  \Rightarrow n\left( A \right) = 2\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{2}{4} = \frac{1}{2}\)

Chọn A.

b) “Hai lần tung đều xuất hiện mặt sấp” \( \Rightarrow A = \{ SS\}  \Rightarrow n\left( A \right) = 1\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{1}{4}\)

Chọn B.

c) “Lần thứ nhất xuất hiện mặt sấp” \( \Rightarrow A = \{ SN;SS\}  \Rightarrow n\left( A \right) = 2\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{2}{4} = \frac{1}{2}\)

Chọn A.

d) “Mặt sấp xuất hiện đúng một lần” \( \Rightarrow A = \{ SN;NS\}  \Rightarrow n\left( A \right) = 2\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{2}{4} = \frac{1}{2}\)

Chọn A. 

 

GIẢI SBT Toán 10 Cánh Diều Chương 6 Bài 4

Giải bài 21 trang 42 SBT Toán 10 Cánh diều tập 2 – CD

Gieo một con xúc xắc hai lần liên tiếp

a) Xác suất của biến cố “Lần thứ nhất xuất hiện mặt 1 chấm, lần thứ hai xuất hiện mặt 3 chấm” là:

A. \(\frac{1}{2}\)             B. \(\frac{1}{6}\)             C. \(\frac{1}{{36}}\)             D. \(\frac{1}{4}\)

b) Xác suất của biến cố “Lần thứ nhất xuất hiện mặt 6 chấm” là:

A. \(\frac{1}{2}\)             B. \(\frac{1}{6}\)             C. \(\frac{1}{{36}}\)             D. \(\frac{1}{4}\)

c) Xác suất của biến cố “Số chấm xuất hiện ở hai lần gieo là giống nhau” là:

A. \(\frac{1}{2}\)             B. \(\frac{1}{6}\)             C. \(\frac{1}{{36}}\)             D. \(\frac{1}{4}\)

d) Xác suất của biến cố “Số chấm xuất hiện ở hai lần gieo là số chẵn” là:

A. \(\frac{1}{2}\)             B. \(\frac{1}{6}\)             C. \(\frac{1}{{36}}\)             D. \(\frac{1}{4}\)

Hướng dẫn giải chi tiết Bài 21

Phương pháp giải

Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega  \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)

Lời giải chi tiết

Gieo một con xúc xắc hai lần liên tiếp \( \Rightarrow \Omega  = \{ (x;y)|1 \le x;y \le 6\}  \Rightarrow n\left( \Omega  \right) = 6.6 = 36\)

a) “Lần thứ nhất xuất hiện mặt 1 chấm, lần thứ hai xuất hiện mặt 3 chấm” \( \Rightarrow A = \{ (1;3)\}  \Rightarrow n\left( A \right) = 1\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{1}{{36}}\)

Chọn C.

b) “Lần thứ nhất xuất hiện mặt 6 chấm” \( \Rightarrow A = \{ (6;y)|1 \le y \le 6\}  \Rightarrow n\left( A \right) = 1.6 = 6\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{6}{{36}} = \frac{1}{6}\)

Chọn B.

c) “Số chấm xuất hiện ở hai lần gieo là giống nhau” \( \Rightarrow A = \{ (x;x)|1 \le x \le 6\}  \Rightarrow n\left( A \right) = 1 + 1 + 1 + 1 + 1 + 1 = 6\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{6}{{36}} = \frac{1}{6}\)

Chọn B.

d) “Số chấm xuất hiện ở hai lần gieo là số chẵn” \( \Rightarrow n\left( A \right) = 3.3 = 9\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{9}{{36}} = \frac{1}{4}\)

Chọn D.

 

GIẢI SBT Toán 10 Cánh Diều Chương 6 Bài 4

Giải bài 22 trang 42 SBT Toán 10 Cánh diều tập 2 – CD

Tung một đồng xu hai lần liên tiếp. Phát biểu mỗi biến cố sau dưới dạng mệnh đề nêu sự kiện:

a) \(A = \left\{ {NS;SS} \right\}\)                 

b) \(b = \left\{ {NN;NS;SN;SS} \right\}\)

Hướng dẫn giải chi tiết Bài 22

Phương pháp giải

Dựa vào các tập hợp phát biểu biến cố dưới dạng mệnh đề

Lời giải chi tiết

a) \(A = \left\{ {NS;SS} \right\}\)

\( \Rightarrow \) A: “Lần thứ hai xuất hiện mặt sấp”                 

b) \(b = \left\{ {NN;NS;SN;SS} \right\}\)

\( \Rightarrow \) B: “Lần thứ nhất xuất hiện mặt sấp hoặc mặt ngửa”

 

GIẢI SBT Toán 10 Cánh Diều Chương 6 Bài 4

Giải bài 23 trang 42 SBT Toán 10 Cánh diều tập 2 – CD

Tung một đồng xu hai lần liên tiếp. Tính xác suất của biến cố “Lần thứ hai xuất hiện mặt ngửa”

Hướng dẫn giải chi tiết Bài 23

Phương pháp giải

Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega  \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)

Lời giải chi tiết

Tung một đồng xu hai lần liên tiếp \( \Rightarrow n\left( \Omega  \right) = 2.2 = 4\)

a) “Lần thứ hai xuất hiện mặt ngửa” \( \Rightarrow n\left( A \right) = 2.1 = 2\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{2}{4} = \frac{1}{2}\) 

 

GIẢI SBT Toán 10 Cánh Diều Chương 6 Bài 4

Giải bài 24 trang 42 SBT Toán 10 Cánh diều tập 2 – CD

Gieo một xúc xắc hai lần liên tiếp. Phát biểu mỗi biến cố sau dưới dạng mệnh đề nêu sự kiện:

a) \(C = \left\{ {\left( {1;1} \right)} \right\}\)

b) \(D = \left\{ {\left( {1;6} \right);\left( {6;1} \right)} \right\}\)

c) \(G = \left\{ {\left( {3;3} \right);\left( {3;6} \right);\left( {6;3} \right);\left( {6;6} \right)} \right\}\)

d) \(E = \left\{ {\left( {1;1} \right);\left( {1;3} \right);\left( {1;5} \right);\left( {3;3} \right);\left( {3;1} \right);\left( {3;5} \right);\left( {5;5} \right);\left( {5;1} \right);\left( {5;3} \right)} \right\}\)

Hướng dẫn giải chi tiết Bài 24

Phương pháp giải

Dựa vào các tập hợp phát biểu biến cố dưới dạng mệnh đề

Lời giải chi tiết

a) C: “Số chấm xuất hiện ở hai lần gieo đều là 1”

b) D: “Giá trị tuyệt đối của hiệu số chấm giữa hai lần gieo là 5”

c) E: “Số chấm xuất hiện ở hai lần gieo chia hết cho 3”

d) G: “Tích số chấm xuất hiện ở hai lần gieo là số lẻ”

 

GIẢI SBT Toán 10 Cánh Diều Chương 6 Bài 4

Giải bài 25 trang 42 SBT Toán 10 Cánh diều tập 2 – CD

Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của mỗi biến cố sau:

a) A: “Lần thứ hai xuất hiện mặt 5 chấm”

b) B: “Tổng số chấm xuất hiện trong hai lần gieo bằng 7”

c) C: “Tổng số chấm xuất hiện trong hai lần gieo chia hết cho 3”

d) D: “Số chấm xuất hiện lần thứ nhất là số nguyên tố”

e) E: “Số chấm xuất hiện lần thứ nhất nhỏ hơn số chấm xuất hiện lần thứ hai”

Hướng dẫn giải chi tiết Bài 25

Phương pháp giải

Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega  \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)

Lời giải chi tiết

Gieo một con xúc xắc hai lần liên tiếp \( \Rightarrow \Omega  = \{ (x;y)|1 \le x;y \le 6\}  \Rightarrow n\left( \Omega  \right) = 6.6 = 36\)

a) A: “Lần thứ hai xuất hiện mặt 5 chấm” \(A = \left\{ {\left( {x;5} \right)|x = 1;2;3;4;5;6} \right\}\)\( \Rightarrow n\left( A \right) = 6.1 = 6\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{6}{{36}} = \frac{1}{6}\)

b) B: “Tổng số chấm xuất hiện trong hai lần gieo bằng 7\(A = \left\{ {\left( {1;6} \right);\left( {6;1} \right);\left( {2;5} \right);\left( {5;2} \right);\left( {3;4} \right);\left( {4;3} \right)} \right\}\)\( \Rightarrow n\left( A \right) = \left( {1 + 1 + 1} \right).2 = 6\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{6}{{36}} = \frac{1}{6}\)

c) C: “Tổng số chấm xuất hiện trong hai lần gieo chia hết cho 3” \(A = \left\{ {\left( {1;2} \right);\left( {2;1} \right);\left( {1;5} \right);\left( {5;1} \right);\left( {2;4} \right);\left( {4;2} \right);\left( {3;3} \right);\left( {3;6} \right);\left( {6;3} \right);\left( {4;5} \right);\left( {5;4} \right);\left( {6;6} \right)} \right\}\)\( \Rightarrow n\left( A \right) = \left( 5 \right).2 + 1 + 1 = 12\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{12}}{{36}} = \frac{1}{3}\)

d) D: “Số chấm xuất hiện lần thứ nhất là số nguyên tố” \(A = \left\{ \begin{array}{l}\left( {1;2} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {2;4} \right);\left( {2;5} \right);\left( {2;6} \right);\\\left( {3;1} \right);\left( {3;2} \right);\left( {3;3} \right);\left( {3;4} \right);\left( {3;5} \right);\left( {3;6} \right);\\\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right);\left( {5;4} \right);\left( {5;5} \right);\left( {5;6} \right);\end{array} \right\}\)\( \Rightarrow n\left( A \right) = 18\) 

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{18}}{{36}} = \frac{1}{2}\)

e) E: “Số chấm xuất hiện lần thứ nhất nhỏ hơn số chấm xuất hiện lần thứ hai” \(A = \left\{ \begin{array}{l}\left( {1;2} \right);\left( {1;3} \right);\left( {1;4} \right);\left( {1;5} \right);\left( {1;6} \right);\left( {2;3} \right);\left( {2;4} \right);\left( {2;5} \right);\left( {2;6} \right);\\\left( {3;4} \right);\left( {3;5} \right);\left( {3;6} \right);\left( {4;5} \right);\left( {4;6} \right);\left( {5;6} \right)\end{array} \right\}\)\( \Rightarrow n\left( A \right) = 15\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{15}}{{36}} = \frac{5}{{12}}\) 

 

GIẢI SBT Toán 10 Cánh Diều Chương 6 Bài 4

Giải bài 26 trang 43 SBT Toán 10 Cánh diều tập 2 – CD

Tung một đồng xu 3 lần liên tiếp

a) Tìm số phần tử của tập hợp \(\Omega \) là không gian mẫu trong trò chơi trên

b) Xác định mỗi biến cố:

A: “Lần thứ hai xuất hiện mặt ngửa”

B: “Mặt sấp xuất hiện đúng hai lần”

Hướng dẫn giải chi tiết Bài 26

Phương pháp giải

Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega  \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)

Lời giải chi tiết

a) Tung một đồng xu 3 lần liên tiếp \( \Rightarrow n\left( \Omega  \right) = 2.2.2 = 8\)

b) Xác định mỗi biến cố:

A: “Lần thứ hai xuất hiện mặt ngửa” \(A = \left\{ {NNN;NNS;SNN;SNS} \right\}\)\( \Rightarrow n\left( A \right) = 4\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{4}{8} = \frac{1}{2}\)

B: “Mặt sấp xuất hiện đúng hai lần” \(B = \left\{ {NSS;SNS;SSN} \right\}\)\( \Rightarrow n\left( B \right) = 3\)

\( \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{3}{8}\)

 

GIẢI SBT Toán 10 Cánh Diều Chương 6 Bài 4
=======

THUỘC: Giải sách bài tập toán 10 – Cánh diều

Bài liên quan:

  1. Giải SBT Bài 5 Chương 6 – SBT Toán 10 CÁNH DIỀU
  2. Giải SBT Bài CUỐI Chương 6 – SBT Toán 10 CÁNH DIỀU
  3. Giải SBT Bài 1 Chương 6 – SBT Toán 10 CÁNH DIỀU
  4. Giải SBT Bài 2 Chương 6 – SBT Toán 10 CÁNH DIỀU
  5. Giải SBT Bài 3 Chương 6 – SBT Toán 10 CÁNH DIỀU

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập sách bài tập (SBT) Toán 10 – Cánh diều

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.