adsense
Giải bài tập SGK Ôn chương 5 Đạo hàm – Giải tích 11 cơ bản
Ôn tập chương 5: Đạo hàm
Các công thức tính đạo hàm
BẢNG 1: CÁC CÔNG THỨC ĐẠO HÀM LỚP 11
Hàm số | Hàm hợp tương ứng |
\({\left( C \right)^\prime } = 0\,\,\,\,\,;\,\,\,\,{\left( x \right)^\prime } = 1\) | |
\({\left( {{x^n}} \right)^\prime } = n.{x^{n – 1}}\,\,\left( {n \in \mathbb{N}\,\,,\,\,n \ge 2} \right)\) | \({\left( {{u^n}} \right)^\prime } = n.{u^{n – 1}}.u’\,\,\,\,\,,\,\,\,\left( {n \in \mathbb{N}\,\,,\,\,n \ge 2} \right)\) |
\({\left( {\sqrt x } \right)^\prime } = \frac{1}{{2\sqrt x }}\,\,\,\,,\,\,\left( {x > 0} \right)\) | \(\,\,\,{\left( {\sqrt u } \right)^\prime } = \frac{{u’\,}}{{2\sqrt u }}\,\,\,\,\,,\,\,\left( {u > 0} \right)\) |
\({\left( {\sin x} \right)^\prime } = \cos x\,\,\,\) | \({\left( {\sin u} \right)^\prime } = u.’\cos u\) |
\({\left( {\cos x} \right)^\prime } = – \sin x\,\) | \({\left( {\cos u} \right)^\prime } = – u’.\sin u\) |
\({\left( {\tan x} \right)^\prime } = \frac{1}{{{{\cos }^2}x}}\,\,\) | \(\,\,{\left( {\tan u} \right)^\prime } = \frac{{u’}}{{{{\cos }^2}u}}\,\) |
\({\left( {\cot x} \right)^\prime } = – \frac{1}{{{{\sin }^2}x}}\,\,\) | \(\,\,{\left( {\cot u} \right)^\prime } = – \frac{{u’}}{{{{\sin }^2}u}}\,\) |
adsense
====================
Trả lời