• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải bài tập Toán 7 – Cánh diều / Giải bài 7 Tam giác cân – Chương 7 Toán 7 Cánh diều

Giải bài 7 Tam giác cân – Chương 7 Toán 7 Cánh diều

Ngày 04/03/2023 Thuộc chủ đề:Giải bài tập Toán 7 – Cánh diều Tag với:GBT Chuong 7 Toan 7 – CD

Giải bài 7 Tam giác cân – Chương 7 Toán 7 Cánh diều
============

Câu hỏi khởi động trang 93 SGK Toán 7 Cánh diều tập 2 – CD

Cầu Long Biên bắc qua sông Hồng ở Thủ đô Hà Nội gợi nên hình ảnh tam giác ABC có sự đối xứng và cân bằng.

 Giải bài 7 Tam giác cân - Chương 7 Toán 7 Cánh diều 1

Tam giác ABC như vậy gọi là tam giác gì?

Hướng dẫn giải chi tiết Câu hỏi khởi động

Phương pháp giải

Tam giác ABC có sự đối xứng và cân bằng.

Lời giải chi tiết

Tam giác ABC là tam giác cân.

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 7

Hoạt động 1 trang 93 SGK Toán 7 Cánh diều tập 2 – CD

Trong Hình 68, hai cạnh AB và AC của tam giác ABC có bằng nhau hay không?

Giải bài 7 Tam giác cân - Chương 7 Toán 7 Cánh diều 2

Hướng dẫn giải chi tiết Hoạt động 1

Phương pháp giải

Quan sát Hình 68 , đo độ dài cạnh AB và AC rồi so sánh.

Lời giải chi tiết

Hai cạnh AB và AC của tam giác ABC có bằng nhau.

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 7

Hoạt động 2 trang 94 SGK Toán 7 Cánh diều tập 2 – CD

Cho tam giác ABC cân tại A, tia phân giác của góc A cắt cạnh BC tại D (Hình 72).

Giải bài 7 Tam giác cân - Chương 7 Toán 7 Cánh diều 3 

a) Hai tam giác ABD và ACD có bằng nhau hay không? Vì sao?

b) Hai góc B và C có bằng nhau hay không? Vì sao?

Hướng dẫn giải chi tiết Hoạt động 2

Phương pháp giải

a) So sánh hai tam giác ABD và tam giác ACD theo trường hợp c.g.c.

b) Sử dụng kết quả phần a) để xét hai góc B và góc C. Hai tam giác bằng nhau thì các cặp góc tương ứng bằng nhau.

Lời giải chi tiết

a) Xét hai tam giác ABD và ACD có:

     AB = AC

     \(\widehat {BAD} = \widehat {CAD}\) (AD là phân giác của góc A)

     AD chung

Vậy \(\Delta ABD = \Delta ACD\)(c.g.c)

b) \(\Delta ABD = \Delta ACD\) nên \(\widehat B = \widehat C\) ( 2 góc tương ứng)

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 7

Hoạt động 3 trang 94 SGK Toán 7 Cánh diều tập 2 – CD

Cho tam giác ABC thỏa mãn \(\widehat B = \widehat C\). Kẻ AH vuông góc với BC, H thuộc BC (Hình 74).

Giải bài 7 Tam giác cân - Chương 7 Toán 7 Cánh diều 4 

a) Hai tam giác BAH và CAH có bằng nhau hay không? Vì sao?

b) Hai cạnh AB và AC có bằng nhau hay không? Vì sao?

Hướng dẫn giải chi tiết Hoạt động 3

Phương pháp giải

a) Xét hai tam giác BAH và CAH theo trường hợp g.c.g.

b) Sử dụng kết quả phần a) để xét hai cạnh AB và AC. Hai tam giác bằng nhau thì các cặp cạnh tương ứng bằng nhau

Lời giải chi tiết

a) \(\widehat B = \widehat C\). Mà tổng ba góc trong một tam giác bằng 180° nên \(\widehat {BAH} = \widehat {CAH}\).

Xét hai tam giác BAH và CAH có:

     \(\widehat {BAH} = \widehat {CAH}\);

     AH chung;

     \(\widehat {AHB} = \widehat {AHC}\) (= 90°).

Vậy \(\Delta BAH = \Delta CAH\)(g.c.g)

b) \(\Delta BAH = \Delta CAH\) nên AB = AC ( 2 cạnh tương ứng).

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 7

Luyện tập trang 95 SGK Toán 7 Cánh diều tập 2 – CD

Cho tam giác ABC cân tại A. Qua điểm M nằm giữa A và B kẻ đường thẳng song song với BC, cắt cạnh AC tại N. Chứng minh tam giác AMN cân.

Hướng dẫn giải chi tiết Luyện tập

Phương pháp giải

Chứng minh tam giác AMN cân bằng cách chứng minh hai góc AMN và ANM bằng nhau.

Lời giải chi tiết

Giải bài 7 Tam giác cân - Chương 7 Toán 7 Cánh diều 5

Ta có tam giác ABC cân mà MN // BC. Nên  \(\widehat {AMN} = \widehat {ABC};\widehat {ANM} = \widehat {ACB}\) (đồng vị)

Mà \(\widehat {ABC} = \widehat {ACB}\)(tam giác ABC cân) nên \(\widehat {AMN} = \widehat {ANM}\).

Vậy tam giác AMN cân tại A ( Tam giác có 2 góc bằng nhau)

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 7

Hoạt động 4 trang 95 SGK Toán 7 Cánh diều tập 2 – CD

Dùng thước thẳng (có chia đơn vị) và compa vẽ tam giác cân ABC có cạnh đáy BC = 4 cm, cạnh bên AB = AC = 3 cm.

Hướng dẫn giải chi tiết Hoạt động 4

Phương pháp giải

Để vẽ tam giác ABC, ta làm như sau:

Bước 1. Vẽ đoạn thẳng BC = 4 cm

Bước 2. Vẽ một phần đường tròn tâm B bán kính 3 cm và một phần đường tròn tâm C bán kính 3 cm, chúng cắt nhau tại điểm A.

Bước 3. Vẽ các đoạn thẳng AB, AC. Ta nhận được tam giác ABC.

Lời giải chi tiết

Giải bài 7 Tam giác cân - Chương 7 Toán 7 Cánh diều 6

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 7

Giải bài 1 trang 96 SGK Toán 7 Cánh diều tập 2 – CD

Cho tam giác ABC cân tại A có M là trung điểm cạnh AC và N là trung điểm cạnh AB. Chứng minh \(BM = CN\)

Hướng dẫn giải chi tiết Bài 1

Phương pháp giải

Chứng minh BM = CN bằng cách chứng minh tam giác AMB bằng tam giác ANC .

Lời giải chi tiết

Giải bài 7 Tam giác cân - Chương 7 Toán 7 Cánh diều 7

Tam giác ABC cân nên AB = AC.

M và N lần lượt là trung điểm của AC và AB nên:

     \(\begin{array}{l}AN = BN = \dfrac{1}{2}AB\\AM = CM = \dfrac{1}{2}AC\end{array}\)

Mà AB = AC nên AN = BN = AM = CM.

Xét tam giác AMB và tam giác ANC có:

     \(\widehat A\)chung;

     AB = AC;

     AM = AN.

Vậy \(\Delta AMB = \Delta ANC\)(c.g.c) nên BM = CN ( 2 cạnh tương ứng).

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 7

Giải bài 2 trang 96 SGK Toán 7 Cánh diều tập 2 – CD

Cho tam giác ABC có \(\widehat A = 120^\circ \). Tia phân giác của góc A cắt cạnh BC tại D. Đường thẳng qua D song song với AB cắt cạnh AC tại E. Chứng minh rằng tam giác ADE đều.

Hướng dẫn giải chi tiết Bài 2

Phương pháp giải

Chứng minh tam giác ADE đều ta chứng minh ba góc trong tam giác ADE đều bằng 60°.

Lời giải chi tiết

Giải bài 7 Tam giác cân - Chương 7 Toán 7 Cánh diều 8

\(\widehat A = 120^\circ \)nên \(\widehat {DAE} = 60^\circ \)(AD là phân giác của góc A).

Ta có: DE // AB nên  \(\widehat {CED} = \widehat {EAB} = 120^\circ \)(hai góc đồng vị). Ba điểm A, E, C thẳng hàng nên góc AEC bằng 180° 

\(\Rightarrow \widehat {AED} = 180^\circ  – \widehat {CED} = 180^\circ  – 120^\circ  = 60^\circ \)

Tam giác ADE có \(\widehat {EAD} = \widehat {ADE}\) (\(=60^0\)) nên là tam giác cân.

Mà \(\widehat {DEA} = 60^\circ \)

Do đó, tam giác ADE đều ( tam giác cân có 1 góc bằng \(60^0\)).

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 7

Giải bài 3 trang 96 SGK Toán 7 Cánh diều tập 2 – CD

Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của cạnh huyền BC. Chứng minh tam giác MAB vuông cân.

Hướng dẫn giải chi tiết Bài 3

Phương pháp giải

Ta chứng minh tam giác MAB vuông cân bằng cách chứng minh trong tam giác có một góc vuông tại một đỉnh và có cặp cạnh bằng nhau xuất phát từ đỉnh đó.

Lời giải chi tiết

Giải bài 7 Tam giác cân - Chương 7 Toán 7 Cánh diều 9

Tam giác ABC vuông cân tại A nên  \(\widehat A = 90^\circ ;\widehat B = \widehat C; AB = AC\) .

Tổng ba góc trong một tam giác bằng 180° nên \(\widehat B = \widehat C = 90:2 = 45^\circ \).

Xét tam giác ABM và tam giác ACM có:

AB = AC

AM chung

BM = CM

\(\Rightarrow \Delta ABM = \Delta ACM\) (c.c.c)

\(\Rightarrow \widehat {BAM} = \widehat {CAM}\) (2 góc tương ứng)

Mà \(\widehat {BAM} + \widehat {CAM}=\widehat{BAC}=90^0\)

\(\Rightarrow \widehat {BAM} = \widehat {CAM} = 90:2 = 45^\circ \).

Xét tam giác MAB: \(\widehat {MBA} = \widehat {BAM} = 45^\circ  \Rightarrow \widehat {BMA} = 90^\circ ;MB = MA\).

Vậy tam giác MAB vuông cân tại M.

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 7

Giải bài 4 trang 96 SGK Toán 7 Cánh diều tập 2 – CD

Trong Hình 76, cho biết các tam giác ABD và BCE là tam giác đều và A, B, C thẳng hàng. Chứng minh rằng:

Giải bài 7 Tam giác cân - Chương 7 Toán 7 Cánh diều 10 

a) AD // BE và BD // CE;

b) \(\widehat {ABE} = \widehat {DBC} = 120^\circ \);

c) AE = CD.

Hướng dẫn giải chi tiết Bài 4

Phương pháp giải

a) Ta chứng minh AD // BE và BD // CE dựa vào các cặp góc bằng nhau ở vị trí đồng vị.

b) Chứng minh \(\widehat {ABE} = \widehat {DBC} = 120^\circ \)dựa vào số đo góc của ba điểm thẳng hàng là 180°.

c) Chứng minh AE = CD bằng cách chứng minh tam giác ABE bằng tam giác DBC

Lời giải chi tiết

a)

Tam giác ABD và BCE là tam giác đều → \(\widehat {EBC} = \widehat {DAB} = 60^\circ \)và A, B, C thẳng hàng. Hai góc EBC và DAB ở vị trí đồng vị nên AD // BE.

Tam giác ABD và BCE là tam giác đều → \(\widehat {DBA} = \widehat {ECB} = 60^\circ \)và A, B, C thẳng hàng. Hai góc DBA và ECB ở vị trí đồng vị nên BD // CE.

b) Ta có A, B, C thẳng hàng nên góc ABC bằng 180°. Mà \(\widehat {DBA} = \widehat {EBC} = 60^\circ  \to \widehat {DBE} = 60^\circ \).

Vậy \(\widehat {ABE} = \widehat {DBC} = 120^\circ \) (\(\widehat {ABE} = \widehat {DBA} + \widehat {DBE};\widehat {DBC} = \widehat {DBE} + \widehat {EBC}\)).

c) Tam giác ABD và BCE là tam giác đều 

\(\Rightarrow  AB = BD, BE = BC.\)

Xét hai tam giác ABE và DBC có:

     AB = DB;

     \(\widehat {ABE} = \widehat {DBC} = 120^\circ \);

     BE = BC.

\(\Rightarrow \Delta ABE = \Delta DBC\) (c.g.c)

Do đó, AE = DC ( 2 cạnh tương ứng).

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 7

Giải bài 5 trang 96 SGK Toán 7 Cánh diều tập 2 – CD

Trong thiết kế của một ngôi nhà, độ nghiêng của mái nhà so với phương nằm ngang phải phù hợp với kết cấu của ngôi nhà và vật liệu làm mái nhà. Hình 77 mô tả mặt cắt đứng của ngôi nhà, trong đó độ nghiêng của mái nhà so với phương nằm ngang được biểu diễn bởi số đo góc ở đáy của tam giác ABC cân tại A.

 Giải bài 7 Tam giác cân - Chương 7 Toán 7 Cánh diều 11

Tính độ nghiêng của mái nhà so với mặt phẳng nằm ngang trong mỗi trường hợp sau:

a) Góc ở đỉnh A là (khoảng) 120° đối với mái nhà lợp bằng ngói;

b) Góc ở đỉnh A là (khoảng) 140° đối với mái nhà lợp bằng fibro xi măng;

c) Góc ở đỉnh A là (khoảng) 148° đối với mái nhà lợp bằng tôn.

Hướng dẫn giải chi tiết Bài 5

Phương pháp giải

Dựa vào tổng ba góc trong một tam giác bằng 180° để tính độ nghiêng của mái nhà so với mặt phẳng nằm ngang.

Lời giải chi tiết

Tam giác ABC cân tại A nên \(\widehat B = \widehat C\).

Vậy độ nghiêng của mái nhà so với mặt phẳng nằm ngang bằng: \((180^\circ  – \widehat A):2\).

a) Góc ở đỉnh A là (khoảng) 120° đối với mái nhà lợp bằng ngói:

Vậy độ nghiêng của mái nhà so với mặt phẳng nằm ngang bằng: \((180^\circ  – 120^\circ ):2 = 30^\circ \).

b) Góc ở đỉnh A là (khoảng) 140° đối với mái nhà lợp bằng fibro xi măng:

Vậy độ nghiêng của mái nhà so với mặt phẳng nằm ngang bằng: \((180^\circ  – 140^\circ ):2 = 20^\circ \).

c) Góc ở đỉnh A là (khoảng) 148° đối với mái nhà lợp bằng tôn:

Vậy độ nghiêng của mái nhà so với mặt phẳng nằm ngang bằng: \((180^\circ  – 148^\circ ):2 = 16^\circ \).

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 7

Bài liên quan:

  1. Giải bài 6 Trường hợp bằng nhau thứ ba của tam giác góc – cạnh – góc – Chương 7 Toán 7 Cánh diều
  2. Giải bài 8 Đường vuông góc và đường xiên – Chương 7 Toán 7 Cánh diều
  3. Giải bài 9 Đường trung trực của một đoạn thẳng – Chương 7 Toán 7 Cánh diều
  4. Giải bài 10 Tính chất ba đường trung tuyến của tam giác – Chương 7 Toán 7 Cánh diều
  5. Giải bài 11 Tính chất ba đường phân giác của tam giác – Chương 7 Toán 7 Cánh diều
  6. Giải bài 12 Tính chất ba đường trung trực của tam giác – Chương 7 Toán 7 Cánh diều
  7. Giải bài 13 Tính chất ba đường cao của tam giác – Chương 7 Toán 7 Cánh diều
  8. Giải bài cuối chương VII trang 119 – Chương 7 Toán 7 Cánh diều
  9. Giải bài 1 Tổng các góc của một tam giác – Chương 7 Toán 7 Cánh diều
  10. Giải bài 2 Quan hệ giữa góc và cạnh đối diện, bất đẳng thức tam giác – Chương 7 Toán 7 Cánh diều
  11. Giải bài 3 Hai tam giác bằng nhau – Chương 7 Toán 7 Cánh diều
  12. Giải bài 4 Trường hợp bằng nhau thứ nhất của tam giác cạnh – cạnh – cạnh – Chương 7 Toán 7 Cánh diều
  13. Giải bài 5 Trường hợp bằng nhau thứ hai của tam giác cạnh – góc – cạnh – Chương 7 Toán 7 Cánh diều

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải bài tập Toán lớp 7 – Sách Cánh diều

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.