• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Giải bài 4.34 trang 65 SBT Toán 10 – KN

Đăng ngày: 15/09/2022 Biên tập: admin Thuộc chủ đề:Giải sách bài tập toán 10 - Kết nối Tag với:Bài 11. Tích vô hướng của hai vectơ - SBT Toán 10 KNTT

Giải bài 4.34 trang 65 SBT Toán 10 – KN – KẾT NỐI TRI THỨC
CỦA BÀI HỌC: Bài 11. Tích vô hướng của hai vectơ – SBT Toán 10 KNTT

=======

Đề bài

Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(A(2;1)\) và \(B(4;3).\)

a) Tìm tọa độ của điểm \(C\) thuộc trục hoành sao cho tam giác \(ABC\) vuông tại \(A.\) Tính chu vi và diện tích của tam giác \(ABC.\)

b) Tìm tọa độ điểm \(D\) sao cho tam giác \(ABD\) vuông cân tại \(A.\)

Phương pháp giải

–  Tính các các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) xong tính tích vô hướng của chúng để tìm tọa độ điểm \(C.\)

–  Tính chu vi và diện tích tam giác \(ABC.\)

–  Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {AB} .\overrightarrow {AD}  = 0}\\{AB = AD}\end{array}} \right.\) để tìm tọa độ điểm \(D.\)

Lời giải chi tiết

a)      Vì điểm \(C\) thuộc trục hoành nên tọa độ điểm \(C\) là: \(C(x;0)\)

Ta có: \(\overrightarrow {AB}  = (2;2)\) và \(\overrightarrow {AC}  = (x – 2; – 1)\)

Để tam giác \(ABC\) vuông tại \(A\) \( \Leftrightarrow \) \(\overrightarrow {AB} .\overrightarrow {AC}  = 0\)

\( \Leftrightarrow \) \(2\left( {x – 2} \right) – 2 = 0\)

\( \Leftrightarrow \) \(2x – 6 = 0\)

\( \Leftrightarrow \) \(x = 3\)

Vậy \(C(3;0).\)

Ta có: \(AB = 2\sqrt 2 ,\) \(AC = \sqrt 2 \) và \(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( {3 – 4} \right)}^2} + {3^2}}  = \sqrt {10} \)

Chu vi tam giác \(ABC\) là: \(AB + AC + BC = 2\sqrt 2  + \sqrt 2  + \sqrt {10}  = 3\sqrt 2  + \sqrt {10} \)

Diện tích tam giác \(ABC\) là: \({S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.2\sqrt 2 .\sqrt 2  = 2\) (đvdt)

b)     Gọi tọa độ điểm \(D\) là: \(D(x;y)\)

Ta có: \(\overrightarrow {AD}  = (x – 2;y – 1)\) và \(\overrightarrow {AB}  = (2;2)\)

Để tam giác \(ABD\) vuông cân tại \(A\)

\( \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {AB} .\overrightarrow {AD}  = 0}\\{AB = AD}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{2\left( {x – 2} \right) + 2\left( {y – 1} \right) = 0}\\{{{\left( {x – 2} \right)}^2} + {{\left( {y – 1} \right)}^2} = 8}\end{array}} \right.\)

\( \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x + y = 3}\\{{{\left( {x – 2} \right)}^2} + {{\left( {y – 1} \right)}^2} = 8}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{y = 3 – x}\\{{{\left( {x – 2} \right)}^2} + {{\left( {3 – x – 1} \right)}^2} = 8}\end{array}} \right.\)

Thuộc chủ đề:Giải sách bài tập toán 10 - Kết nối Tag với:Bài 11. Tích vô hướng của hai vectơ - SBT Toán 10 KNTT

Bài liên quan:

  1. Giải bài 4.38 trang 66 SBT Toán 10 – KN
  2. Giải bài 4.37 trang 66 SBT Toán 10 – KN
  3. Giải bài 4.36 trang 66 SBT Toán 10 – KN
  4. Giải bài 4.35 trang 65 SBT Toán 10 – KN
  5. Giải bài 4.33 trang 65 SBT Toán 10 – KN
  6. Giải bài 4.32 trang 65 SBT Toán 10 – KN
  7. Giải bài 4.31 trang 65 SBT Toán 10 – KN
  8. Giải bài 4.30 trang 65 SBT Toán 10 – KN
  9. Giải bài 4.29 trang 65 SBT Toán 10 – KN

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập sách bài tập (SBT) Toán 10 – Kết nối




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.