• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Khối đa diện / Đề: Trên ba tia Ox,Oy,Oz vuông góc với nhau từng đôi, lần lượt lấy các điểm A,B,C sao cho \(OA = a,{\rm{ }}OB = b,{\rm{ }}OC = c.\) Giả sử A cố định còn B,C thay đổi nhưng luôn luôn thỏa OA=OB+OC. Tính thể tích lớn nhất V.max của khối tứ diện OABC.

Đề: Trên ba tia Ox,Oy,Oz vuông góc với nhau từng đôi, lần lượt lấy các điểm A,B,C sao cho \(OA = a,{\rm{ }}OB = b,{\rm{ }}OC = c.\) Giả sử A cố định còn B,C thay đổi nhưng luôn luôn thỏa OA=OB+OC. Tính thể tích lớn nhất V.max của khối tứ diện OABC.

Ngày 23/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm thể tích hình chóp vận dụng

trac nghiem the tich da dien

  • Câu hỏi:

    Trên ba tia Ox,Oy,Oz vuông góc với nhau từng đôi, lần lượt lấy các điểm A,B,C sao cho \(OA = a,{\rm{ }}OB = b,{\rm{ }}OC = c.\) Giả sử A cố định còn B,C thay đổi nhưng luôn luôn thỏa OA=OB+OC. Tính thể tích lớn nhất V.max của khối tứ diện OABC.

    • A. \({V_{\max }} = \frac{{{a^3}}}{6}.\)
    • B. \({V_{\max }} = \frac{{{a^3}}}{8}.\)
    • C. \({V_{\max }} = \frac{{{a^3}}}{24}.\)
    • D. \({V_{\max }} = \frac{{{a^3}}}{32}.\)

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

     

 

 

 

 

Đáp án đúng: C

 

Hãy trả lời câu hỏi trước khi xem đáp án và lời giải
 

 

=======
Xem lý thuyết Thể tích đa diện

Bài liên quan:

  1. Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng và O là tâm của đáy. Gọi M, N, P và Q lần lượt là hình chiếu vuông góc của O trên các mặt phẳng (SAB), (SBC), (SCD) và (SDA). Thể tích của khối chóp O.MNPQ
  2. Câu 49: (MH Toan 2020) Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A\), \(AB = a\), \(\widehat {SBA} = \widehat {SCA} = 90^\circ \), góc giữa hai mặt phẳng \((SAB)\) và \((SAC)\) bằng \(60^\circ \). Thể tích của khối chóp đã cho bằng
  3. Đề: Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, \(AB = BC = \frac{1}{2}AD = a\). Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ACD.
  4. Đề: Cho hình chóp đều có cạnh đáy bằng x. Diện tích xung quanh gấp đôi diện tích đáy. Khi đó thể tích hình chóp bằng:
  5. Đề: Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh x, \(\widehat {BA{\rm{D}}} = {60^o},\) gọi \(I = AC \cap B{\rm{D}}.\) Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là H sao cho H là trung điểm của BI. Góc giữa SC và mặt phẳng (ABCD) bằng \({45^o}.\) Khi đó thể tích khối chóp S.ABCD bằng:
  6. Đề: Cho hình chóp tam giác đều\(S.ABC\), cạnh đáy bằng \(a\),\(\widehat {{\rm{AS}}B} = {60^0}\). Thể tích của khối chóp\(S.ABC\)là
  7. Đề: Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông tại \(B\), \(AB = 3a\), \(BC = 4a\), \(\left( {SBC} \right) \bot \left( {ABC} \right)\), \(SB = 2a\sqrt 3 \), \(\widehat {SBC} = {30^ \circ }\). Thể tích của \(S.ABC\) là:
  8. Đề: Cho hình lăng trụ tam giác đều ABC.A’B’C’ có \(AA' = a\sqrt 3 \). Gọi I là giao điểm của AB’ và A’B. Cho biết khoảng cách từ I đến mặt phẳng (BCC’B’) bằng \(\frac{{a\sqrt 3 }}{2}\). Tính thể tích khối lăng trụ ABC.A’B’C’.
  9. Đề: Cho hình chóp S.ABC có chiều cao bằng a, \(AB = a,BC = a\sqrt 3 ,\widehat {ABC} = {60^0}\). Tính thể tích thể tích V của khối chóp?
  10. Đề: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân cạnh huyền 4a, thể tích bằng \(8{{\rm{a}}^3}.\) Tính đường cao SH của hình chóp.
  11. Đề: Cho hình chóp S.ABC có đáy là hình tam giác vuông cân tại B và SA vuông với (ABC). Biết \(AC = 3a\sqrt 2 \) và góc giữa mặt phẳng (SBC) và (ABC) bằng 45o. Tính thể tích V của khối chóp S.ABC.
  12. Đề: Cho hình chóp S.ABC có các mặt bên (SAB), (SBC), (SCA) đôi một vuông góc với nhau và có diện tích lần lượt là 8 \(c{m^2}\), 9 \(c{m^2}\) và 25\(c{m^2}\). Thể tích của hình chóp là:
  13. Đề: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy, mặt bên (SCD) tạo với đáy một góc \(\varphi = {60^0}\). Thể tích khối chóp S.ABCD là:
  14. Đề: Cho hình chóp đều S.ABC có cạnh đáy bằng a, khoảng cách giữa cạnh bên SA và cạnh đáy BC bằng \(\frac{{3a}}{4}\). Thể tích khối chóp S.ABC là:
  15. Đề: Cho hình chóp S.ABC có đáy là tam giác vuông tại B, cạnh SA vuông góc với đáy và \(AB = a;SA = AC = 2a\). Tính thể tích V của khối chóp S.ABC.

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.