• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Lý thuyết Đường tiệm cận

Đăng ngày: 26/10/2018 Biên tập: admin Thuộc chủ đề:Toán lớp 12 Tag với:Đường tiệm cận

Mục lục:

  1. 1. Đường tiệm cận ngang
    1. a) Định nghĩa
    2. Lý thuyết Đường tiệm cận
  2. 2. Đường tiệm cận đứng
    1. a) Định nghĩa
    2. b) Chú ý
adsense

1. Đường tiệm cận ngang

a) Định nghĩa

Đường thẳng \(y=b\) được gọi là tiệm cận ngang của đồ thị hàm số \(y = f(x)\) nếu thỏa mãn một trong các điều kiện sau:

  • \(\lim_{x\rightarrow -\infty } f(x) = b\)
  •  \(\lim_{x\rightarrow +\infty } f(x) = b\)

Lý thuyết Đường tiệm cận
b) Chú ý

  • Điều kiện để đồ thị hàm số \(y = \frac{P(x)}{Q(x)}\)   có tiệm cận ngang là bậc của đa thức P(x) bé hơn hoặc bằng bậc của đa thức Q(x).
  • Tổng quát: Xét hàm số \(y = \frac{a_nx^n + … + a_0}{b_mx^m + … + b_0} \ \ \ m, n \in N; a_n\neq 0; b_m\neq 0\).
    • Điều kiện để hàm số có tiệm cận ngang là \(n\leq m.\)
    • Nếu \(n=m\): tiệm cận ngang là đường thẳng \(y = \frac{a_n}{b_m}\)
    • Nếu \(n<m\) tiệm cận ngang là đường thẳng \(y=0.\)

2. Đường tiệm cận đứng

a) Định nghĩa

Đường thẳng \(x=a\) được gọi là đường tiệm cận đứng của đồ thị hàm số \(y = f(x)\) nếu thỏa mãn một trong các điều kiện sau:

  • \(\lim_{x\rightarrow a^+} f(x) = \pm \infty\)
  • \(\lim_{x\rightarrow a^-} f(x) = \pm \infty\)

Lý thuyết Đường tiệm cận

b) Chú ý

  • Đường thẳng \(x=a\) là đường tiệm cận đứng của đồ thị \(y = f(x)\) thì a không thuộc tập xác định của \(f(x)\).
  • Đối với hàm phân thức \(y = \frac{P(x)}{Q(x)}\) thì a là nghiệm Q(x)=0.

Phương pháp
1. Tìm tiệm cận ngang, tiệm cận đứng của đồ thị hàm số $y = f(x)$
Thực hiện theo các bước sau:
+ Bước 1. Tìm tập xác định của hàm số $f(x).$
+ Bước 2. Tìm các giới hạn của $f(x)$ khi $x$ dần tới các biên của miền xác định và dựa vào định nghĩa của các đường tiệm cận để kết luận.
Chú ý:
+ Đồ thị hàm số $f$ chỉ có thể có tiệm cận ngang khi tập xác định của nó là một khoảng vô hạn hay một nửa khoảng vô hạn (nghĩa là biến $x$ có thể tiến đến $ + \infty $ hoặc  $ – \infty $).
+ Đồ thị hàm số $f$ chỉ có thể có tiệm cận đứng khi tập xác định của nó có một trong các dạng sau: $(a;b)$, $[a;b)$, $(a;b]$, $(a;+∞)$, $(-∞;b)$ hoặc là hợp của các tập hợp này và tập xác định không có một trong các dạng sau: $R$, $(c;+∞)$, $(-∞;d)$, $[c;d]$.
2. Tìm tiệm cận xiên của đồ thị hàm số $y = f(x)$
Thực hiện theo các bước sau:
+ Bước 1. Tìm tập xác định của hàm số (đồ thị hàm số $f$ chỉ có thể có tiệm cận xiên nếu tập xác định của nó làlà một khoảng vô hạn hay một nửa khoảng vô hạn).
+ 
Bước 2. Sử dụng định nghĩa về tiệm cận xiên. Hoặc sử dụng định lí sau:
Nếu $\mathop {\lim }\limits_{x \to + \infty } \frac{{f(x)}}{x} = a \ne 0$ và $\mathop {\lim }\limits_{x \to + \infty } [f(x) – ax] = b$ hoặc $\mathop {\lim }\limits_{x \to – \infty } \frac{{f(x)}}{x} = a \ne 0$ và $\mathop {\lim }\limits_{x \to – \infty } [f(x) – ax] = b$ thì đường thẳng ${\rm{y}} = {\rm{ax}} + {\rm{b}}$ là tiệm cận xiên của đồ thị hàm số $f$.

CHÚ Ý: Đối với hàm phân thức: $f\left( x \right) = \frac{{P(x)}}{{Q(x)}}$ trong đó $P(x)$, $Q(x)$ là hai đa thức của $x$ ta thường dùng phương pháp sau để tìm các đường tiệm cận của đồ thị hàm số:
a. Tiệm cận đứng
+ Nếu $\left\{ \begin{array}{l}
P({x_0}) \ne 0\\
Q({x_0}) = 0
\end{array} \right.$ thì đường thẳng: $x = {x_0}$ là tiệm cận đứng của đồ thị hàm số.
b. Tiệm cận ngang
+ Nếu bậc của $P(x)$ bé hơn bậc của $Q(x)$ thì đồ thị của hàm số có tiệm cận ngang là trục hoành độ.
+ Nếu bậc của $P(x)$ bằng bậc của $Q(x)$ thì đồ thị hàm có tiệm cận ngang là đường thẳng: $y = \frac{A}{B}$ trong đó $A$, $B$ lần lượt là hệ số của số hạng có số mũ lớn nhất của $P(x)$ và $Q(x).$
+ Nếu bậc của $P(x)$ lớn hơn bậc của $Q(x)$ thì đồ thị của hàm số không có tiệm cận ngang.
c. Tiệm cận xiên
+ Nếu bậc của $P(x)$ bé hơn hay bằng bậc của $Q(x)$ hoặc lớn hơn bậc của $Q(x)$ từ hai bậc trở lên thì đồ thị hàm số không có tiệm cận xiên.
+ Nếu bậc của $P(x)$ lớn hơn bậc của $Q(x)$ một bậc và $P(x)$ không chia hết cho $Q(x)$ thì đồ thị hàm có tiệm cận xiên và ta tìm tiệm cận xiên bằng cách chia $P(x)$ cho $Q(x)$ và viết ${\rm{f}}\left( {\rm{x}} \right) = {\rm{ax}} + {\rm{b}} + \frac{{R(x)}}{{Q(x)}}$, trong đó $\mathop {\lim }\limits_{x \to + \infty } \frac{{R(x)}}{{Q(x)}} = 0$, $\mathop {\lim }\limits_{x \to – \infty } \frac{{R(x)}}{{Q(x)}} = 0$. Suy ra đường thẳng ${\rm{y}} = {\rm{ax}} + {\rm{b}}$ là tiệm cận xiên của đồ thị hàm số.

 


Trả lời câu hỏi Toán 12 Giải tích Bài 4 trang 27: Cho hàm số y = (2 – x)/(x – 1) (H.16) có đồ thị (C).

Nêu nhận xét về khoảng cách từ điểm M(x; y) ∈ (C) tới đường thẳng y = -1 khi |x| → +∞

adsense

Lý thuyết Đường tiệm cận

Lời giải:

Khoảng cách từ điểm M(x; y) ∈ (C) tới đường thẳng y = -1 khi |x| → +∞ dần tiến về 0.


Trả lời câu hỏi Toán 12 Giải tích Bài 4 trang 29: Tính Lý thuyết Đường tiệm cận và nêu nhận xét về khoảng cách MH khi x → 0 (H.17)

Lý thuyết Đường tiệm cận

Lời giải:

Lý thuyết Đường tiệm cận

Khi x dần đến 0 thì độ dài đoạn MH cũng dần đến 0.

 

Thuộc chủ đề:Toán lớp 12 Tag với:Đường tiệm cận

Bài liên quan:

  1. Bài tập luyện tập TIỆM CẬN của hàm số – 2022
  2. GIẢI TOÁN TIỆM CẬN CỦA HÀM SỐ BẰNG CASIO
  3. Bài 4. Đường tiệm cận
  4. Phát triển câu 15 đề tốt nghiệp THPT 2020 – Tiệm cận của đồ thị hàm số
  5. Ví dụ Đường tiệm cận

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Học toán lớp 12
  • Chương 1: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số
  • Chương 2: Hàm Số Lũy Thừa Hàm Số Mũ Và Hàm Số Lôgarit
  • Chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng
  • Chương 4: Số Phức
  • Chương 1: Khối Đa Diện
  • Chương 2: Mặt Nón, Mặt Trụ, Mặt Cầu
  • Chương 3: Phương Pháp Tọa Độ Trong Không Gian




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.